Spatial patterns for reaction-diffusion systems with conditions described by inclusions
Applications of Mathematics, Tome 42 (1997) no. 6, pp. 421-449.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.
DOI : 10.1023/A:1022203129542
Classification : 35B32, 35J85, 35K57, 35K58, 35K85, 47H04, 47H15, 47N20
Keywords: reaction-diffusion systems; variational inequalities; inclusions; bifurcation; stationary solutions; spatial patterns
@article{10_1023_A_1022203129542,
     author = {Eisner, Jan and Ku\v{c}era, Milan},
     title = {Spatial patterns for reaction-diffusion systems with conditions described by inclusions},
     journal = {Applications of Mathematics},
     pages = {421--449},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {1997},
     doi = {10.1023/A:1022203129542},
     mrnumber = {1475051},
     zbl = {0940.35030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022203129542/}
}
TY  - JOUR
AU  - Eisner, Jan
AU  - Kučera, Milan
TI  - Spatial patterns for reaction-diffusion systems with conditions described by inclusions
JO  - Applications of Mathematics
PY  - 1997
SP  - 421
EP  - 449
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022203129542/
DO  - 10.1023/A:1022203129542
LA  - en
ID  - 10_1023_A_1022203129542
ER  - 
%0 Journal Article
%A Eisner, Jan
%A Kučera, Milan
%T Spatial patterns for reaction-diffusion systems with conditions described by inclusions
%J Applications of Mathematics
%D 1997
%P 421-449
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022203129542/
%R 10.1023/A:1022203129542
%G en
%F 10_1023_A_1022203129542
Eisner, Jan; Kučera, Milan. Spatial patterns for reaction-diffusion systems with conditions described by inclusions. Applications of Mathematics, Tome 42 (1997) no. 6, pp. 421-449. doi : 10.1023/A:1022203129542. http://geodesic.mathdoc.fr/articles/10.1023/A:1022203129542/

Cité par Sources :