Spatial patterns for reaction-diffusion systems with conditions described by inclusions
Applications of Mathematics, Tome 42 (1997) no. 6, pp. 421-449
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.
DOI :
10.1023/A:1022203129542
Classification :
35B32, 35J85, 35K57, 35K58, 35K85, 47H04, 47H15, 47N20
Keywords: reaction-diffusion systems; variational inequalities; inclusions; bifurcation; stationary solutions; spatial patterns
Keywords: reaction-diffusion systems; variational inequalities; inclusions; bifurcation; stationary solutions; spatial patterns
@article{10_1023_A_1022203129542,
author = {Eisner, Jan and Ku\v{c}era, Milan},
title = {Spatial patterns for reaction-diffusion systems with conditions described by inclusions},
journal = {Applications of Mathematics},
pages = {421--449},
publisher = {mathdoc},
volume = {42},
number = {6},
year = {1997},
doi = {10.1023/A:1022203129542},
mrnumber = {1475051},
zbl = {0940.35030},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022203129542/}
}
TY - JOUR AU - Eisner, Jan AU - Kučera, Milan TI - Spatial patterns for reaction-diffusion systems with conditions described by inclusions JO - Applications of Mathematics PY - 1997 SP - 421 EP - 449 VL - 42 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022203129542/ DO - 10.1023/A:1022203129542 LA - en ID - 10_1023_A_1022203129542 ER -
%0 Journal Article %A Eisner, Jan %A Kučera, Milan %T Spatial patterns for reaction-diffusion systems with conditions described by inclusions %J Applications of Mathematics %D 1997 %P 421-449 %V 42 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1022203129542/ %R 10.1023/A:1022203129542 %G en %F 10_1023_A_1022203129542
Eisner, Jan; Kučera, Milan. Spatial patterns for reaction-diffusion systems with conditions described by inclusions. Applications of Mathematics, Tome 42 (1997) no. 6, pp. 421-449. doi: 10.1023/A:1022203129542
Cité par Sources :