Global existence for a nuclear fluid in one dimension: the $T>0$ case
Applications of Mathematics, Tome 47 (2002) no. 1, pp. 45-75.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a simplified one-dimensional thermal model of nuclear matter, described by a system of Navier-Stokes-Poisson type, with a non monotone equation of state due to an effective nuclear interaction. We prove the existence of globally defined (large) solutions of the corresponding free boundary problem, with an exterior pressure $P$ which is not required to be positive, provided sufficient thermal dissipation is present. We give also a partial description of the asymptotic behaviour of the system, in the two cases $P>0$ and $P0$.
DOI : 10.1023/A:1021754900964
Classification : 74D10, 76D05, 76N15
Keywords: Navier-Stokes equations; compressible fluid
@article{10_1023_A_1021754900964,
     author = {Ducomet, B.},
     title = {Global existence for a nuclear fluid in one dimension: the $T>0$ case},
     journal = {Applications of Mathematics},
     pages = {45--75},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2002},
     doi = {10.1023/A:1021754900964},
     mrnumber = {1876491},
     zbl = {1090.76517},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1021754900964/}
}
TY  - JOUR
AU  - Ducomet, B.
TI  - Global existence for a nuclear fluid in one dimension: the $T>0$ case
JO  - Applications of Mathematics
PY  - 2002
SP  - 45
EP  - 75
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1021754900964/
DO  - 10.1023/A:1021754900964
LA  - en
ID  - 10_1023_A_1021754900964
ER  - 
%0 Journal Article
%A Ducomet, B.
%T Global existence for a nuclear fluid in one dimension: the $T>0$ case
%J Applications of Mathematics
%D 2002
%P 45-75
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1021754900964/
%R 10.1023/A:1021754900964
%G en
%F 10_1023_A_1021754900964
Ducomet, B. Global existence for a nuclear fluid in one dimension: the $T>0$ case. Applications of Mathematics, Tome 47 (2002) no. 1, pp. 45-75. doi : 10.1023/A:1021754900964. http://geodesic.mathdoc.fr/articles/10.1023/A:1021754900964/

Cité par Sources :