Cubic splines with minimal norm
Applications of Mathematics, Tome 47 (2002) no. 3, pp. 285-295.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Natural cubic interpolatory splines are known to have a minimal $L_2$-norm of its second derivative on the $C^2$ (or $W^2_2)$ class of interpolants. We consider cubic splines which minimize some other norms (or functionals) on the class of interpolatory cubic splines only. The cases of classical cubic splines with defect one (interpolation of function values) and of Hermite $C^1$ splines (interpolation of function values and first derivatives) with spline knots different from the points of interpolation are discussed.
DOI : 10.1023/A:1021749621862
Classification : 41A15, 65D05, 65D07
Keywords: cubic interpolatory spline; minimal norm interpolation
@article{10_1023_A_1021749621862,
     author = {Kobza, Ji\v{r}{\'\i}},
     title = {Cubic splines with minimal norm},
     journal = {Applications of Mathematics},
     pages = {285--295},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2002},
     doi = {10.1023/A:1021749621862},
     mrnumber = {1900515},
     zbl = {1090.65012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1021749621862/}
}
TY  - JOUR
AU  - Kobza, Jiří
TI  - Cubic splines with minimal norm
JO  - Applications of Mathematics
PY  - 2002
SP  - 285
EP  - 295
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1021749621862/
DO  - 10.1023/A:1021749621862
LA  - en
ID  - 10_1023_A_1021749621862
ER  - 
%0 Journal Article
%A Kobza, Jiří
%T Cubic splines with minimal norm
%J Applications of Mathematics
%D 2002
%P 285-295
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1021749621862/
%R 10.1023/A:1021749621862
%G en
%F 10_1023_A_1021749621862
Kobza, Jiří. Cubic splines with minimal norm. Applications of Mathematics, Tome 47 (2002) no. 3, pp. 285-295. doi : 10.1023/A:1021749621862. http://geodesic.mathdoc.fr/articles/10.1023/A:1021749621862/

Cité par Sources :