Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition
Applications of Mathematics, Tome 46 (2001) no. 2, pp. 103-144.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part $\Gamma \!_1$ of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary $\partial \Omega $ is piecewise of class $C^3$ and the initial condition belongs to $L_2$ only. Strong monotonicity and Lipschitz continuity of the form $a(v,w)$ is not an assumption, but a property of this form following from its physical background.
DOI : 10.1023/A:1013783722140
Classification : 35M10, 65M12, 65M60, 65N30, 78M10
Keywords: finite element method; parabolic-elliptic problems; two-dimensional electromagnetic field
@article{10_1023_A_1013783722140,
     author = {\v{R}{\'\i}hov\'a-\v{S}kabrahov\'a, Dana},
     title = {Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous {Dirichlet} boundary condition},
     journal = {Applications of Mathematics},
     pages = {103--144},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2001},
     doi = {10.1023/A:1013783722140},
     mrnumber = {1818081},
     zbl = {1066.65117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1013783722140/}
}
TY  - JOUR
AU  - Říhová-Škabrahová, Dana
TI  - Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition
JO  - Applications of Mathematics
PY  - 2001
SP  - 103
EP  - 144
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1013783722140/
DO  - 10.1023/A:1013783722140
LA  - en
ID  - 10_1023_A_1013783722140
ER  - 
%0 Journal Article
%A Říhová-Škabrahová, Dana
%T Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition
%J Applications of Mathematics
%D 2001
%P 103-144
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1013783722140/
%R 10.1023/A:1013783722140
%G en
%F 10_1023_A_1013783722140
Říhová-Škabrahová, Dana. Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition. Applications of Mathematics, Tome 46 (2001) no. 2, pp. 103-144. doi : 10.1023/A:1013783722140. http://geodesic.mathdoc.fr/articles/10.1023/A:1013783722140/

Cité par Sources :