Homogenization of the Maxwell equations: Case I. Linear theory
Applications of Mathematics, Tome 46 (2001) no. 1, pp. 29-51
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.
DOI :
10.1023/A:1013727504393
Classification :
35B27, 35Q60, 74Q10, 78A25, 78A48, 78M40
Keywords: Maxwell’s equations; homogenization; two-scale convergence; corrector results; heterogeneous materials; periodic coefficients; nonperiodic coefficients; compactness result; effective properties; fiber composites
Keywords: Maxwell’s equations; homogenization; two-scale convergence; corrector results; heterogeneous materials; periodic coefficients; nonperiodic coefficients; compactness result; effective properties; fiber composites
@article{10_1023_A_1013727504393,
author = {Wellander, Niklas},
title = {Homogenization of the {Maxwell} equations: {Case} {I.} {Linear} theory},
journal = {Applications of Mathematics},
pages = {29--51},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2001},
doi = {10.1023/A:1013727504393},
mrnumber = {1808428},
zbl = {1058.78004},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1013727504393/}
}
TY - JOUR AU - Wellander, Niklas TI - Homogenization of the Maxwell equations: Case I. Linear theory JO - Applications of Mathematics PY - 2001 SP - 29 EP - 51 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1013727504393/ DO - 10.1023/A:1013727504393 LA - en ID - 10_1023_A_1013727504393 ER -
Wellander, Niklas. Homogenization of the Maxwell equations: Case I. Linear theory. Applications of Mathematics, Tome 46 (2001) no. 1, pp. 29-51. doi: 10.1023/A:1013727504393
Cité par Sources :