On exact results in the finite element method
Applications of Mathematics, Tome 46 (2001) no. 6, pp. 467-478.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution $u$. We show that the Galerkin approximation of $u$ based on the so-called biharmonic finite elements is independent of the values of $u$ in the interior of any subelement.
DOI : 10.1023/A:1013716729409
Classification : 35J40, 65N30
Keywords: boundary value elliptic problems; finite element method; generalized splines; elastic plate
@article{10_1023_A_1013716729409,
     author = {Hlav\'a\v{c}ek, Ivan and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {On exact results in the finite element method},
     journal = {Applications of Mathematics},
     pages = {467--478},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2001},
     doi = {10.1023/A:1013716729409},
     mrnumber = {1865517},
     zbl = {1066.65126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1013716729409/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
AU  - Křížek, Michal
TI  - On exact results in the finite element method
JO  - Applications of Mathematics
PY  - 2001
SP  - 467
EP  - 478
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1013716729409/
DO  - 10.1023/A:1013716729409
LA  - en
ID  - 10_1023_A_1013716729409
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%A Křížek, Michal
%T On exact results in the finite element method
%J Applications of Mathematics
%D 2001
%P 467-478
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1013716729409/
%R 10.1023/A:1013716729409
%G en
%F 10_1023_A_1013716729409
Hlaváček, Ivan; Křížek, Michal. On exact results in the finite element method. Applications of Mathematics, Tome 46 (2001) no. 6, pp. 467-478. doi : 10.1023/A:1013716729409. http://geodesic.mathdoc.fr/articles/10.1023/A:1013716729409/

Cité par Sources :