[Une Note sur le cône des courbes mobiles]
S. Boucksom, J.-P. Demailly, M. Păun and Th. Peternell proved that the cone of mobile curves of a projective complex manifold X is dual to the cone generated by classes of effective divisors and conjectured an extension of this duality in the Kähler set-up. We show that their conjecture implies that coincides with the cone of integer classes represented by closed positive smooth -forms. Without assuming the validity of the conjecture we prove that this equality of cones still holds at the level of degree functions.
S. Boucksom, J.-P. Demailly, M. Păun et Thomas Peternell ont montré que le cône des courbes mobiles d'une variété projective complexe X est le dual du cône engendré par les classes de diviseurs effectifs, et ils ont conjecturé que cette dualité pouvait s'étendre dans le contexte kählerien. Nous montrons que cette conjecture implique que coïncide avec le cône des classes entières représentées par des formes positives fermées de type et de classe . Sans supposer que cette conjecture soit vraie, nous montrons que cette égalité de cônes a lieu en tout cas au niveau des fonctions degré associées.
Accepté le :
Publié le :
Toma, Matei  1 , 2
@article{CRMATH_2010__348_1-2_71_0,
author = {Toma, Matei},
title = {A {Note} on the cone of mobile curves},
journal = {Comptes Rendus. Math\'ematique},
pages = {71--73},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {1-2},
doi = {10.1016/j.crma.2009.11.003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.003/}
}
TY - JOUR AU - Toma, Matei TI - A Note on the cone of mobile curves JO - Comptes Rendus. Mathématique PY - 2010 SP - 71 EP - 73 VL - 348 IS - 1-2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.crma.2009.11.003/ DO - 10.1016/j.crma.2009.11.003 LA - en ID - CRMATH_2010__348_1-2_71_0 ER -
Toma, Matei. A Note on the cone of mobile curves. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 71-73. doi: 10.1016/j.crma.2009.11.003
Cité par Sources :