Functional Analysis
A class of Banach spaces with no unconditional basic sequence
[Une classe d'espace de Banach sans suite basique inconditionnelle]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 43-48.

Voir la notice de l'article provenant de la source Numdam

We give a construction of a reflexive Banach space Xω1 with a transfinite basis of length ω1 and with no unconditional basic sequence. In addition every bounded operator from a subspace of Xω1 into the space Xω1 is a sum of a simple diagonal operator and a strictly singular one.

Nous construisons un espace de Banach réflexif Xω1 ayant une base transfinie de longueur ω1 et n'admettant aucune suite basique inconditionnelle. De plus, tout opérateur borné d'un sous-espace de Xω1 dans cet espace est somme d'un opérateur diagonal très simple et d'un opérateur strictement singulier.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00272-3

Argyros, Spiros A. 1 ; Lopez-Abad, Jordi 2 ; Todorcevic, Stevo 3

1 Department of Mathematics, National Technical University of Athens, Zogratou Campus, 15780 Athens, Greece
2 Équipe de logique mathématique, Université Paris VII, 2, place Jussieu, 75251 Paris cedex, France
3 CNRS–Université Paris VII, 2, place Jussieu, 75251 Paris cedex, France
@article{CRMATH_2003__337_1_43_0,
     author = {Argyros, Spiros A. and Lopez-Abad, Jordi and Todorcevic, Stevo},
     title = {A class of {Banach} spaces with no unconditional basic sequence},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {43--48},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00272-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00272-3/}
}
TY  - JOUR
AU  - Argyros, Spiros A.
AU  - Lopez-Abad, Jordi
AU  - Todorcevic, Stevo
TI  - A class of Banach spaces with no unconditional basic sequence
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 43
EP  - 48
VL  - 337
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00272-3/
DO  - 10.1016/S1631-073X(03)00272-3
LA  - en
ID  - CRMATH_2003__337_1_43_0
ER  - 
%0 Journal Article
%A Argyros, Spiros A.
%A Lopez-Abad, Jordi
%A Todorcevic, Stevo
%T A class of Banach spaces with no unconditional basic sequence
%J Comptes Rendus. Mathématique
%D 2003
%P 43-48
%V 337
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00272-3/
%R 10.1016/S1631-073X(03)00272-3
%G en
%F CRMATH_2003__337_1_43_0
Argyros, Spiros A.; Lopez-Abad, Jordi; Todorcevic, Stevo. A class of Banach spaces with no unconditional basic sequence. Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 43-48. doi : 10.1016/S1631-073X(03)00272-3. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(03)00272-3/

[1] Argyros, S.A.; Deliyanni, I. Examples of asymptotic ℓ1 Banach spaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 973-995

[2] S.A. Argyros, A. Manoussakis, An indecomposable and unconditionally saturated Banach space, Studia Math., to appear

[3] S.A. Argyros, A. Tolias, Indecomposability and unconditionality in duality, Preprint

[4] Bellenot, S.; Haydon, R.; Odell, E. Quasi reflexive and tree spaces constructed in the spirit of R.C. James, Contemp. Math., Volume 85 (1989), pp. 19-43

[5] Edgar, G.A. A long James space, Proc. Conf. on Measure Theory, Lecture Notes in Math., 794, 1980, pp. 31-37

[6] Gowers, W.T. A solution to Banach's hyperplane problem, Bull. London Math. Soc., Volume 28 (1996), pp. 297-304

[7] Gowers, W.T.; Maurey, B. The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993), pp. 851-874

[8] Lindenstrauss, J. On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 967-970

[9] Schlumprecht, Th. An arbitrarily distortable Banach space, Israel J. Math., Volume 76 (1991), pp. 81-95

[10] Todorcevic, S. Partitioning pairs of countable ordinals, Acta Math., Volume 159 (1987), pp. 261-294

[11] S. Todorcevic, Coherent sequences, in: Handbook of Set Theory, to appear

Cité par Sources :