Voir la notice de l'article provenant de la source Numdam
The velocity fields corresponding to an incompressible fluid of Oldroyd-B type subject to a linear flow within an infinite edge are determined for all values of the relaxation and retardation times. The well known solution for a Navier–Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appears as a limiting case of our solutions.
Les champs de vitesses correspondant à un fluide de type Oldroyd-B qui exécute un mouvement linéaire dans un dièdre infini sont déterminés pour toutes les valeurs des temps de relaxation et de retard. La solution bien connue pour le fluide de Navier–Stokes, les solutions correspondant à un fluide de Maxwell et à un fluide de grade deux apparaissent comme un cas limite de nos solutions.
Fetecau, Constantin 1
@article{CRMATH_2002__335_11_979_0, author = {Fetecau, Constantin}, title = {The {Rayleigh{\textendash}Stokes} problem for an edge in an {Oldroyd-B} fluid}, journal = {Comptes Rendus. Math\'ematique}, pages = {979--984}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02577-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02577-3/} }
TY - JOUR AU - Fetecau, Constantin TI - The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid JO - Comptes Rendus. Mathématique PY - 2002 SP - 979 EP - 984 VL - 335 IS - 11 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02577-3/ DO - 10.1016/S1631-073X(02)02577-3 LA - en ID - CRMATH_2002__335_11_979_0 ER -
%0 Journal Article %A Fetecau, Constantin %T The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid %J Comptes Rendus. Mathématique %D 2002 %P 979-984 %V 335 %N 11 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02577-3/ %R 10.1016/S1631-073X(02)02577-3 %G en %F CRMATH_2002__335_11_979_0
Fetecau, Constantin. The Rayleigh–Stokes problem for an edge in an Oldroyd-B fluid. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 979-984. doi: 10.1016/S1631-073X(02)02577-3
Cité par Sources :
☆ Dedicated to the memory of Caius Iacob and his Professor Henri Villat.