Voir la notice de l'article provenant de la source Numdam
We give examples of bounded domains , even contractible, having the following property: there exists such that, for every integer , problem below, for ε>0 small enough, has at least one solution blowing up as ε→0 at exactly k points. We also prove that the blow-up points tend to some points of as k→∞.
On donne des exemples d'ouverts bornés , même contractibles, satisfaisant la propriété suivante : il existe tel que, pour tout , le problème ci-dessous, pour ε>0 suffisamment petit, a des solutions qui pour ε→0 explosent exactement en k points. On prouve aussi que ces points convergent vers des points de quand k→∞.
Molle, Riccardo 1 ; Passaseo, Donato 2
@article{CRMATH_2002__335_5_459_0, author = {Molle, Riccardo and Passaseo, Donato}, title = {Positive solutions for slightly super-critical elliptic equations in contractible domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--462}, publisher = {Elsevier}, volume = {335}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02502-5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02502-5/} }
TY - JOUR AU - Molle, Riccardo AU - Passaseo, Donato TI - Positive solutions for slightly super-critical elliptic equations in contractible domains JO - Comptes Rendus. Mathématique PY - 2002 SP - 459 EP - 462 VL - 335 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02502-5/ DO - 10.1016/S1631-073X(02)02502-5 LA - en ID - CRMATH_2002__335_5_459_0 ER -
%0 Journal Article %A Molle, Riccardo %A Passaseo, Donato %T Positive solutions for slightly super-critical elliptic equations in contractible domains %J Comptes Rendus. Mathématique %D 2002 %P 459-462 %V 335 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02502-5/ %R 10.1016/S1631-073X(02)02502-5 %G en %F CRMATH_2002__335_5_459_0
Molle, Riccardo; Passaseo, Donato. Positive solutions for slightly super-critical elliptic equations in contractible domains. Comptes Rendus. Mathématique, Tome 335 (2002) no. 5, pp. 459-462. doi: 10.1016/S1631-073X(02)02502-5
Cité par Sources :