Voir la notice de l'article provenant de la source Numdam
A new approach to Santaló's inequality on is obtained by combining complex interpolation and Berndtsson's generalization of Prékopa's inequality.
On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.
Cordero-Erausquin, Dario 1
@article{CRMATH_2002__334_9_767_0, author = {Cordero-Erausquin, Dario}, title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--772}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02328-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/} }
TY - JOUR AU - Cordero-Erausquin, Dario TI - Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation JO - Comptes Rendus. Mathématique PY - 2002 SP - 767 EP - 772 VL - 334 IS - 9 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/ DO - 10.1016/S1631-073X(02)02328-2 LA - en ID - CRMATH_2002__334_9_767_0 ER -
%0 Journal Article %A Cordero-Erausquin, Dario %T Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation %J Comptes Rendus. Mathématique %D 2002 %P 767-772 %V 334 %N 9 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/ %R 10.1016/S1631-073X(02)02328-2 %G en %F CRMATH_2002__334_9_767_0
Cordero-Erausquin, Dario. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/
[1] Interpolation Spaces. An Introduction, Springer, Berlin, 1976
[2] Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792
[3] An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990
[4] On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93
[5] On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343
[6] Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961
Cité par Sources :