Santaló's inequality on n by complex interpolation
[Inégalité de Santaló sur n par interpolation complexe]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 767-772.

Voir la notice de l'article provenant de la source Numdam

A new approach to Santaló's inequality on n is obtained by combining complex interpolation and Berndtsson's generalization of Prékopa's inequality.

On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02328-2

Cordero-Erausquin, Dario 1

1 Laboratoire d'analyse et de mathématiques appliquées (CNRS UMR 8050), Université de Marne la Vallée, 77454 Marne la Vallée cedex 2, France
@article{CRMATH_2002__334_9_767_0,
     author = {Cordero-Erausquin, Dario},
     title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {767--772},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02328-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/}
}
TY  - JOUR
AU  - Cordero-Erausquin, Dario
TI  - Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 767
EP  - 772
VL  - 334
IS  - 9
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/
DO  - 10.1016/S1631-073X(02)02328-2
LA  - en
ID  - CRMATH_2002__334_9_767_0
ER  - 
%0 Journal Article
%A Cordero-Erausquin, Dario
%T Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
%J Comptes Rendus. Mathématique
%D 2002
%P 767-772
%V 334
%N 9
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/
%R 10.1016/S1631-073X(02)02328-2
%G en
%F CRMATH_2002__334_9_767_0
Cordero-Erausquin, Dario. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02328-2/

[1] Bergh, J.; Löftröm, J. Interpolation Spaces. An Introduction, Springer, Berlin, 1976

[2] Berndtsson, B. Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792

[3] Hörmander, L. An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990

[4] Meyer, M.; Pajor, A. On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93

[5] Prékopa, A. On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343

[6] Santaló, L. Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961

Cité par Sources :