Actions moyennables et fonctions harmoniques
Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 355-358.

Voir la notice de l'article provenant de la source Numdam

On montre que l'action d'un groupe dénombrable discret sur un espace localement compact invariant de fonctions harmoniques minimales est moyennable.

We prove that the action of a countable discrete group on a locally compact invariant space of minimal harmonic functions is ameanable.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02276-8

Biane, Philippe 1 ; Germain, Emmanuel 2

1 CNRS, Département de mathématiques et applications, École normale supérieure, 45, rue d'Ulm, 75005 Paris, France
2 Institut de mathématiques de Jussieu, Université Paris VII, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2002__334_5_355_0,
     author = {Biane, Philippe and Germain, Emmanuel},
     title = {Actions moyennables et fonctions harmoniques},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {355--358},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02276-8},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02276-8/}
}
TY  - JOUR
AU  - Biane, Philippe
AU  - Germain, Emmanuel
TI  - Actions moyennables et fonctions harmoniques
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 355
EP  - 358
VL  - 334
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02276-8/
DO  - 10.1016/S1631-073X(02)02276-8
LA  - fr
ID  - CRMATH_2002__334_5_355_0
ER  - 
%0 Journal Article
%A Biane, Philippe
%A Germain, Emmanuel
%T Actions moyennables et fonctions harmoniques
%J Comptes Rendus. Mathématique
%D 2002
%P 355-358
%V 334
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02276-8/
%R 10.1016/S1631-073X(02)02276-8
%G fr
%F CRMATH_2002__334_5_355_0
Biane, Philippe; Germain, Emmanuel. Actions moyennables et fonctions harmoniques. Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 355-358. doi : 10.1016/S1631-073X(02)02276-8. http://geodesic.mathdoc.fr/articles/10.1016/S1631-073X(02)02276-8/

[1] Anantharaman, C.; Renault, J. Groupoı̈des moyennables, Monograph. Enseign. Math., 36, Genève, 2000

[2] Ancona, A. Positive harmonic functions and hyperbolicity, Potential Theory – Surveys and Problems, Prague, 1987, Lecture Notes in Math., 1344, Springer, 1988, pp. 1-23

[3] Baum, P.; Connes, A.; Higson, N. Classifying space for proper group actions an K-theory of group C * -algebras, Contemp. Math., Volume 167 (1994), pp. 241-291

[4] N.P. Brown, E. Germain, Dual entropy in discrete groups with amenable actions, Ergodic Theory Dynamical Systems (to appear)

[5] Derriennic, Y. Lois « zéro ou deux » pour les processus de Markov. Applications aux marches aléatoires, Ann. Inst. H. Poincaré Sect. B (N.S.), Volume 12 (1976) no. 2, pp. 111-129

[6] Gromov, M. Spaces and questions, GAFA 2000, Tel Aviv, 1999

[7] Guivar'ch, Y.; Ji, L.; Taylor, J.C. Compactifications of Symetric Spaces, Birkhäuser, 1998

[8] Kemeny, J.G.; Snell, J.L.; Knapp, A.W. Denumerable Markov Chains, Graduate Texts in Math., 40, Springer-Verlag, New York, 1976 (With a chapter on Markov random fields, by David Griffeath)

[9] Tu, J.-L. Remarks on Yu's property A, Bull. Soc. Math. France, Volume 129 (2001), pp. 115-139

[10] Wassermann, S. Exact C * -algebras and related topics, Seoul National University Global Analysis Research Center Lecture Notes, Volume 19 (1994)

[11] Woess, W. Random walks on infinite graphs and groups – a survey on selected topics, Bull. London Math. Soc., Volume 26 (1994) no. 1, pp. 1-60

[12] Woess, W. A description of the Martin boundary for nearest neighbour random walk on free products, Probability Measures on Groups, Oberwolfach, 1985, Lecture Notes in Math., 1210, Springer, Berlin, 1986, pp. 203-215

Cité par Sources :