Divisors on g,g+1 and the minimal resolution conjecture for points on canonical curves
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 4, pp. 553-581

Voir la notice de l'article provenant de la source Numdam

DOI : 10.1016/S0012-9593(03)00022-3

Farkas, Gavril  ; Mustaţǎ, Mircea  ; Popa, Mihnea 1

1 University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)
@article{ASENS_2003_4_36_4_553_0,
     author = {Farkas, Gavril and Musta\c{t}ǎ, Mircea and Popa, Mihnea},
     title = {Divisors on $\mathcal {M}_{g,g+1}$ and the minimal resolution conjecture for points on canonical curves},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {553--581},
     publisher = {Elsevier},
     volume = {Ser. 4, 36},
     number = {4},
     year = {2003},
     doi = {10.1016/S0012-9593(03)00022-3},
     zbl = {1063.14031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/S0012-9593(03)00022-3/}
}
TY  - JOUR
AU  - Farkas, Gavril
AU  - Mustaţǎ, Mircea
AU  - Popa, Mihnea
TI  - Divisors on $\mathcal {M}_{g,g+1}$ and the minimal resolution conjecture for points on canonical curves
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2003
SP  - 553
EP  - 581
VL  - 36
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/S0012-9593(03)00022-3/
DO  - 10.1016/S0012-9593(03)00022-3
LA  - en
ID  - ASENS_2003_4_36_4_553_0
ER  - 
%0 Journal Article
%A Farkas, Gavril
%A Mustaţǎ, Mircea
%A Popa, Mihnea
%T Divisors on $\mathcal {M}_{g,g+1}$ and the minimal resolution conjecture for points on canonical curves
%J Annales scientifiques de l'École Normale Supérieure
%D 2003
%P 553-581
%V 36
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/S0012-9593(03)00022-3/
%R 10.1016/S0012-9593(03)00022-3
%G en
%F ASENS_2003_4_36_4_553_0
Farkas, Gavril; Mustaţǎ, Mircea; Popa, Mihnea. Divisors on $\mathcal {M}_{g,g+1}$ and the minimal resolution conjecture for points on canonical curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 4, pp. 553-581. doi: 10.1016/S0012-9593(03)00022-3

Cité par Sources :