Keywords: generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient
@article{10_1007_s10587_016_0316_4,
author = {Chang, Shan},
title = {Augmentation quotients for {Burnside} rings of generalized dihedral groups},
journal = {Czechoslovak Mathematical Journal},
pages = {1165--1175},
year = {2016},
volume = {66},
number = {4},
doi = {10.1007/s10587-016-0316-4},
mrnumber = {3572929},
zbl = {06674868},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0316-4/}
}
TY - JOUR AU - Chang, Shan TI - Augmentation quotients for Burnside rings of generalized dihedral groups JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1165 EP - 1175 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0316-4/ DO - 10.1007/s10587-016-0316-4 LA - en ID - 10_1007_s10587_016_0316_4 ER -
%0 Journal Article %A Chang, Shan %T Augmentation quotients for Burnside rings of generalized dihedral groups %J Czechoslovak Mathematical Journal %D 2016 %P 1165-1175 %V 66 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0316-4/ %R 10.1007/s10587-016-0316-4 %G en %F 10_1007_s10587_016_0316_4
Chang, Shan. Augmentation quotients for Burnside rings of generalized dihedral groups. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1165-1175. doi: 10.1007/s10587-016-0316-4
[1] Bak, A., Tang, G.: Solution to the presentation problem for powers of the augmentation ideal of torsion free and torsion Abelian groups. Adv. Math. 189 (2004), 1-37. | DOI | MR | Zbl
[2] Chang, S.: Augmentation quotients for complex representation rings of point groups. J. Anhui Univ., Nat. Sci. 38 (2014), 13-19 Chinese. English summary. | MR | Zbl
[3] Chang, S.: Augmentation quotients for complex representation rings of generalized quaternion groups. Chin. Ann. Math., Ser. B. 37 (2016), 571-584. | DOI | MR | Zbl
[4] Chang, S., Chen, H., Tang, G.: Augmentation quotients for complex representation rings of dihedral groups. Front. Math. China 7 (2012), 1-18. | DOI | MR | Zbl
[5] Chang, S., Tang, G.: A basis for augmentation quotients of finite Abelian groups. J. Algebra 327 (2011), 466-488. | DOI | MR | Zbl
[6] Magurn, B. A.: An Algebraic Introduction to $K$-Theory. Encyclopedia of Mathematics and Its Applications 87 Cambridge University Press, Cambridge (2002). | MR | Zbl
[7] Parmenter, M. M.: A basis for powers of the augmentation ideal. Algebra Colloq. 8 (2001), 121-128. | MR | Zbl
[8] Tang, G.: Presenting powers of augmentation ideals of elementary $p$-groups. $K$-Theory 23 (2001), 31-39. | DOI | MR | Zbl
[9] Tang, G.: On a problem of Karpilovsky. Algebra Colloq. 10 (2003), 11-16. | DOI | MR | Zbl
[10] Tang, G.: Structure of augmentation quotients of finite homocyclic Abelian groups. Sci. China, Ser. A. 50 (2007), 1280-1288. | DOI | MR | Zbl
[11] Wu, H., Tang, G. P.: Structure of powers of the augmentation ideal and their consecutive quotients for the Burnside ring of a finite abelian group. Adv. Math. (China) 36 (2007), 627-630 Chinese. English summary. | MR
Cité par Sources :