$1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1143-1163
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The relative cohomology ${\rm H}^1_{\rm diff}(\mathbb {K}(1|3),\mathfrak {osp}(2,3);{\mathcal {D}}_{\lambda ,\mu }(S^{1|3}))$ of the contact Lie superalgebra $\mathbb {K}(1|3)$ with coefficients in the space of differential operators ${\mathcal {D}}_{\lambda ,\mu }(S^{1|3})$ acting on tensor densities on $S^{1|3}$, is calculated in {N. Ben Fraj, I. Laraied, S. Omri} (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^{1/2}$, $X_f\in \mathbb {K}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak {osp}(2,3)$ of $\mathbb {K}(1|3)$. \endgraf In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms ${\mathcal {K}}(1|3)$ on the supercircle $S^{1|3}$ generating the relative cohomology ${\rm H}^1_{\rm diff}({\mathcal {K}}(1|3)$, ${\rm PC}(2,3)$; ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$ with coefficients in ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_{3}(\Phi )=E_{\Phi }^{-1}(D_{1}(D_{2}),D_{3})\alpha _{3}^{1/2}$, $\Phi \in {\mathcal {K}}(1|3)$ introduced by Radul which is invariant with respect to the conformal group ${\rm PC}(2,3)$ of ${\mathcal {K}}(1|3)$. These cocycles are expressed in terms of $S_{3}(\Phi )$ and possess its properties.
The relative cohomology ${\rm H}^1_{\rm diff}(\mathbb {K}(1|3),\mathfrak {osp}(2,3);{\mathcal {D}}_{\lambda ,\mu }(S^{1|3}))$ of the contact Lie superalgebra $\mathbb {K}(1|3)$ with coefficients in the space of differential operators ${\mathcal {D}}_{\lambda ,\mu }(S^{1|3})$ acting on tensor densities on $S^{1|3}$, is calculated in {N. Ben Fraj, I. Laraied, S. Omri} (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^{1/2}$, $X_f\in \mathbb {K}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak {osp}(2,3)$ of $\mathbb {K}(1|3)$. \endgraf In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms ${\mathcal {K}}(1|3)$ on the supercircle $S^{1|3}$ generating the relative cohomology ${\rm H}^1_{\rm diff}({\mathcal {K}}(1|3)$, ${\rm PC}(2,3)$; ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$ with coefficients in ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_{3}(\Phi )=E_{\Phi }^{-1}(D_{1}(D_{2}),D_{3})\alpha _{3}^{1/2}$, $\Phi \in {\mathcal {K}}(1|3)$ introduced by Radul which is invariant with respect to the conformal group ${\rm PC}(2,3)$ of ${\mathcal {K}}(1|3)$. These cocycles are expressed in terms of $S_{3}(\Phi )$ and possess its properties.
DOI :
10.1007/s10587-016-0315-5
Classification :
13N10, 17B56, 17B66, 20G10, 20J06, 53D10, 58A50
Keywords: contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator
Keywords: contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator
@article{10_1007_s10587_016_0315_5,
author = {Agrebaoui, Boujemaa and Hattab, Raja},
title = {$1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the {Schwarzian} derivative},
journal = {Czechoslovak Mathematical Journal},
pages = {1143--1163},
year = {2016},
volume = {66},
number = {4},
doi = {10.1007/s10587-016-0315-5},
mrnumber = {3572928},
zbl = {06674867},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/}
}
TY - JOUR
AU - Agrebaoui, Boujemaa
AU - Hattab, Raja
TI - $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
JO - Czechoslovak Mathematical Journal
PY - 2016
SP - 1143
EP - 1163
VL - 66
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/
DO - 10.1007/s10587-016-0315-5
LA - en
ID - 10_1007_s10587_016_0315_5
ER -
%0 Journal Article
%A Agrebaoui, Boujemaa
%A Hattab, Raja
%T $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
%J Czechoslovak Mathematical Journal
%D 2016
%P 1143-1163
%V 66
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/
%R 10.1007/s10587-016-0315-5
%G en
%F 10_1007_s10587_016_0315_5
Agrebaoui, Boujemaa; Hattab, Raja. $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1143-1163. doi: 10.1007/s10587-016-0315-5
Cité par Sources :