$1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1143-1163
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The relative cohomology ${\rm H}^1_{\rm diff}(\mathbb {K}(1|3),\mathfrak {osp}(2,3);{\mathcal {D}}_{\lambda ,\mu }(S^{1|3}))$ of the contact Lie superalgebra $\mathbb {K}(1|3)$ with coefficients in the space of differential operators ${\mathcal {D}}_{\lambda ,\mu }(S^{1|3})$ acting on tensor densities on $S^{1|3}$, is calculated in {N. Ben Fraj, I. Laraied, S. Omri} (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^{1/2}$, $X_f\in \mathbb {K}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak {osp}(2,3)$ of $\mathbb {K}(1|3)$. \endgraf In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms ${\mathcal {K}}(1|3)$ on the supercircle $S^{1|3}$ generating the relative cohomology ${\rm H}^1_{\rm diff}({\mathcal {K}}(1|3)$, ${\rm PC}(2,3)$; ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$ with coefficients in ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_{3}(\Phi )=E_{\Phi }^{-1}(D_{1}(D_{2}),D_{3})\alpha _{3}^{1/2}$, $\Phi \in {\mathcal {K}}(1|3)$ introduced by Radul which is invariant with respect to the conformal group ${\rm PC}(2,3)$ of ${\mathcal {K}}(1|3)$. These cocycles are expressed in terms of $S_{3}(\Phi )$ and possess its properties.
The relative cohomology ${\rm H}^1_{\rm diff}(\mathbb {K}(1|3),\mathfrak {osp}(2,3);{\mathcal {D}}_{\lambda ,\mu }(S^{1|3}))$ of the contact Lie superalgebra $\mathbb {K}(1|3)$ with coefficients in the space of differential operators ${\mathcal {D}}_{\lambda ,\mu }(S^{1|3})$ acting on tensor densities on $S^{1|3}$, is calculated in {N. Ben Fraj, I. Laraied, S. Omri} (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^{1/2}$, $X_f\in \mathbb {K}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak {osp}(2,3)$ of $\mathbb {K}(1|3)$. \endgraf In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms ${\mathcal {K}}(1|3)$ on the supercircle $S^{1|3}$ generating the relative cohomology ${\rm H}^1_{\rm diff}({\mathcal {K}}(1|3)$, ${\rm PC}(2,3)$; ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$ with coefficients in ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_{3}(\Phi )=E_{\Phi }^{-1}(D_{1}(D_{2}),D_{3})\alpha _{3}^{1/2}$, $\Phi \in {\mathcal {K}}(1|3)$ introduced by Radul which is invariant with respect to the conformal group ${\rm PC}(2,3)$ of ${\mathcal {K}}(1|3)$. These cocycles are expressed in terms of $S_{3}(\Phi )$ and possess its properties.
DOI : 10.1007/s10587-016-0315-5
Classification : 13N10, 17B56, 17B66, 20G10, 20J06, 53D10, 58A50
Keywords: contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator
@article{10_1007_s10587_016_0315_5,
     author = {Agrebaoui, Boujemaa and Hattab, Raja},
     title = {$1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the {Schwarzian} derivative},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1143--1163},
     year = {2016},
     volume = {66},
     number = {4},
     doi = {10.1007/s10587-016-0315-5},
     mrnumber = {3572928},
     zbl = {06674867},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/}
}
TY  - JOUR
AU  - Agrebaoui, Boujemaa
AU  - Hattab, Raja
TI  - $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1143
EP  - 1163
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/
DO  - 10.1007/s10587-016-0315-5
LA  - en
ID  - 10_1007_s10587_016_0315_5
ER  - 
%0 Journal Article
%A Agrebaoui, Boujemaa
%A Hattab, Raja
%T $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
%J Czechoslovak Mathematical Journal
%D 2016
%P 1143-1163
%V 66
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/
%R 10.1007/s10587-016-0315-5
%G en
%F 10_1007_s10587_016_0315_5
Agrebaoui, Boujemaa; Hattab, Raja. $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1143-1163. doi: 10.1007/s10587-016-0315-5

[1] Agrebaoui, B., Dammak, O., Mansour, S.: $1$-cocycle on the group of contactomorphisms on the suppercircles $S^{1|1}$ and $S^{1|2}$ generalizing the Schwarzian derivative. J. Geom. Phys. 75 (2014), 230-247. | DOI | MR

[2] Agrebaoui, B., Mansour, S.: On the cohomology of the Lie superalgebra of contact vector fields on $S^{1| m}$. Comm. Algebra 38 (2010), 382-404. | DOI | MR | Zbl

[3] Basdouri, I., Ammar, M. Ben, Fraj, N. Ben, Boujelbane, M., Kammoun, K.: Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|1}$ and deformations of the superspace of symbols. J. Nonlinear Math. Phys. 16 (2009), 373-409. | DOI | MR

[4] Fraj, N. Ben: Cohomology of ${\cal K}(2)$ acting on linear differential operators on the superspace $\mathbb R^{1|2}$. Lett. Math. Phys. 86 (2008), 159-175. | DOI | MR

[5] Fraj, N. Ben, Laraied, I., Omri, S.: Supertransvectants, cohomology and deformations. J. Math. Phys. 54 (2013), 023501, 19 pages. | MR

[6] Bernstein, J., Leites, D., Molotkov, V., Shander, V.: Seminar on Supersymmetry (v. 1. Algebra and Calcuculus: Main chapters). D. Leites Moscow Center for Continuous Mathematical Education Moskva (2011), Russian.

[7] Bouarroudj, S.: Remarks on the Schwarzian derivatives and the invariant quantization by means of a Finsler function. Indag. Math. 15 (2004), 321-338. | DOI | MR | Zbl

[8] Bouarroudj, S., Ovsienko, V.: Three cocycles on $ Diff (S^1)$ generalizing the Schwarzian derivative. Int. Math. Res. Not. 1998 (1998), 25-39. | DOI | MR | Zbl

[9] Bouarroudj, S., Ovsienko, V.: Riemannian curl in contact geometry. Int. Math. Res. Not. 12 (2015), 3917-3942. | MR | Zbl

[10] Cartan, É.: Leçons sur la Théorie des Espaces à Connexion Projective. French Paris Gauthier-Villars (Cahiers scientifiques, fasc. XVII) (1937). | Zbl

[11] Conley, C. H.: Conformal symbols and the action of contact vector fields over the superline. J. Reine Angew. Math. 633 (2009), 115-163. | MR | Zbl

[12] Fuks, D. B.: Cohomology of Infinite-Dimensional Lie Algebras. Contemporary Soviet Mathematics Consultants Bureau, New York (1986). | MR | Zbl

[13] Gargoubi, H., Mellouli, N., Ovsienko, V.: Differential operators on supercircle: conformally equivariant quantization and symbol calculus. Lett. Math. Phys. (2007), 79 51-65. | DOI | MR | Zbl

[14] Gargoubi, H., Ovsienko, V.: Supertransvectants and symplectic geometry. Int. Math. Res. Notices 2008 Article ID rnn021, 19 pages (2008). | MR | Zbl

[15] Lecomte, P. B. A., Ovsienko, V. Yu.: Projectively equivariant symbol calculus. Lett. Math. Phys. 49 (1999), 173-196. | DOI | MR | Zbl

[16] Manin, Yu. I.: Gauge Fields and Complex Geometry. Nauka Moskva (1984), Russian. | MR | Zbl

[17] Michel, J.-P., Duval, C.: On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative. Int. Math. Res. Not. 2008 (2008), Article ID rnn054, 47 pages. | MR | Zbl

[18] Ovsienko, V.: Lagrange Schwarzian derivative and symplectic Sturm theory. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 2 6 (1993), 73-96. | DOI | MR | Zbl

[19] Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165 Cambridge University Press, Cambridge (2005). | MR | Zbl

[20] Radul, A. O.: Superstring Schwarz derivative and Bott cocycles. Integrable and Superintegrable Systems 336-351 World. Sci. Publ. Teaneck B. Kupershmidt (1990). | MR

Cité par Sources :