Keywords: contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator
@article{10_1007_s10587_016_0315_5,
author = {Agrebaoui, Boujemaa and Hattab, Raja},
title = {$1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the {Schwarzian} derivative},
journal = {Czechoslovak Mathematical Journal},
pages = {1143--1163},
year = {2016},
volume = {66},
number = {4},
doi = {10.1007/s10587-016-0315-5},
mrnumber = {3572928},
zbl = {06674867},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/}
}
TY - JOUR
AU - Agrebaoui, Boujemaa
AU - Hattab, Raja
TI - $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
JO - Czechoslovak Mathematical Journal
PY - 2016
SP - 1143
EP - 1163
VL - 66
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/
DO - 10.1007/s10587-016-0315-5
LA - en
ID - 10_1007_s10587_016_0315_5
ER -
%0 Journal Article
%A Agrebaoui, Boujemaa
%A Hattab, Raja
%T $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative
%J Czechoslovak Mathematical Journal
%D 2016
%P 1143-1163
%V 66
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0315-5/
%R 10.1007/s10587-016-0315-5
%G en
%F 10_1007_s10587_016_0315_5
Agrebaoui, Boujemaa; Hattab, Raja. $1$-cocycles on the group of contactomorphisms on the supercircle $S^{1|3}$ generalizing the Schwarzian derivative. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1143-1163. doi: 10.1007/s10587-016-0315-5
[1] Agrebaoui, B., Dammak, O., Mansour, S.: $1$-cocycle on the group of contactomorphisms on the suppercircles $S^{1|1}$ and $S^{1|2}$ generalizing the Schwarzian derivative. J. Geom. Phys. 75 (2014), 230-247. | DOI | MR
[2] Agrebaoui, B., Mansour, S.: On the cohomology of the Lie superalgebra of contact vector fields on $S^{1| m}$. Comm. Algebra 38 (2010), 382-404. | DOI | MR | Zbl
[3] Basdouri, I., Ammar, M. Ben, Fraj, N. Ben, Boujelbane, M., Kammoun, K.: Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|1}$ and deformations of the superspace of symbols. J. Nonlinear Math. Phys. 16 (2009), 373-409. | DOI | MR
[4] Fraj, N. Ben: Cohomology of ${\cal K}(2)$ acting on linear differential operators on the superspace $\mathbb R^{1|2}$. Lett. Math. Phys. 86 (2008), 159-175. | DOI | MR
[5] Fraj, N. Ben, Laraied, I., Omri, S.: Supertransvectants, cohomology and deformations. J. Math. Phys. 54 (2013), 023501, 19 pages. | MR
[6] Bernstein, J., Leites, D., Molotkov, V., Shander, V.: Seminar on Supersymmetry (v. 1. Algebra and Calcuculus: Main chapters). D. Leites Moscow Center for Continuous Mathematical Education Moskva (2011), Russian.
[7] Bouarroudj, S.: Remarks on the Schwarzian derivatives and the invariant quantization by means of a Finsler function. Indag. Math. 15 (2004), 321-338. | DOI | MR | Zbl
[8] Bouarroudj, S., Ovsienko, V.: Three cocycles on $ Diff (S^1)$ generalizing the Schwarzian derivative. Int. Math. Res. Not. 1998 (1998), 25-39. | DOI | MR | Zbl
[9] Bouarroudj, S., Ovsienko, V.: Riemannian curl in contact geometry. Int. Math. Res. Not. 12 (2015), 3917-3942. | MR | Zbl
[10] Cartan, É.: Leçons sur la Théorie des Espaces à Connexion Projective. French Paris Gauthier-Villars (Cahiers scientifiques, fasc. XVII) (1937). | Zbl
[11] Conley, C. H.: Conformal symbols and the action of contact vector fields over the superline. J. Reine Angew. Math. 633 (2009), 115-163. | MR | Zbl
[12] Fuks, D. B.: Cohomology of Infinite-Dimensional Lie Algebras. Contemporary Soviet Mathematics Consultants Bureau, New York (1986). | MR | Zbl
[13] Gargoubi, H., Mellouli, N., Ovsienko, V.: Differential operators on supercircle: conformally equivariant quantization and symbol calculus. Lett. Math. Phys. (2007), 79 51-65. | DOI | MR | Zbl
[14] Gargoubi, H., Ovsienko, V.: Supertransvectants and symplectic geometry. Int. Math. Res. Notices 2008 Article ID rnn021, 19 pages (2008). | MR | Zbl
[15] Lecomte, P. B. A., Ovsienko, V. Yu.: Projectively equivariant symbol calculus. Lett. Math. Phys. 49 (1999), 173-196. | DOI | MR | Zbl
[16] Manin, Yu. I.: Gauge Fields and Complex Geometry. Nauka Moskva (1984), Russian. | MR | Zbl
[17] Michel, J.-P., Duval, C.: On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative. Int. Math. Res. Not. 2008 (2008), Article ID rnn054, 47 pages. | MR | Zbl
[18] Ovsienko, V.: Lagrange Schwarzian derivative and symplectic Sturm theory. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 2 6 (1993), 73-96. | DOI | MR | Zbl
[19] Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165 Cambridge University Press, Cambridge (2005). | MR | Zbl
[20] Radul, A. O.: Superstring Schwarz derivative and Bott cocycles. Integrable and Superintegrable Systems 336-351 World. Sci. Publ. Teaneck B. Kupershmidt (1990). | MR
Cité par Sources :