Keywords: group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation
@article{10_1007_s10587_016_0314_6,
author = {Bavula, Vladimir V.},
title = {The groups of automorphisms of the {Witt} $W_n$ and {Virasoro} {Lie} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1129--1141},
year = {2016},
volume = {66},
number = {4},
doi = {10.1007/s10587-016-0314-6},
mrnumber = {3572927},
zbl = {06674866},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0314-6/}
}
TY - JOUR AU - Bavula, Vladimir V. TI - The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1129 EP - 1141 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0314-6/ DO - 10.1007/s10587-016-0314-6 LA - en ID - 10_1007_s10587_016_0314_6 ER -
%0 Journal Article %A Bavula, Vladimir V. %T The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras %J Czechoslovak Mathematical Journal %D 2016 %P 1129-1141 %V 66 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0314-6/ %R 10.1007/s10587-016-0314-6 %G en %F 10_1007_s10587_016_0314_6
Bavula, Vladimir V. The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1129-1141. doi: 10.1007/s10587-016-0314-6
[1] Bavula, V. V.: Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism. C. R., Math., Acad. Sci. Paris 350 (2012), 553-556. | DOI | MR | Zbl
[2] Bavula, V. V.: Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras. Izv. Math. 77 (2013), 1067-1104. | DOI | MR | Zbl
[3] Bavula, V. V.: The groups of automorphisms of the Lie algebras of triangular polynomial derivations. J. Pure Appl. Algebra 218 (2014), 829-851. | DOI | MR | Zbl
[4] Bavula, V. V.: The group of automorphisms of the Lie algebra of derivations of a polynomial algebra. Algebra Appl. 16 (2017), 175-183 DOI: | DOI | MR
[5] Djoković, D. Ž., Zhao, K.: Derivations, isomorphisms, and second cohomology of generalized Witt algebras. Trans. Am. Math. Soc. 350 (1998), 643-664. | DOI | MR | Zbl
[6] Grabowski, J.: Isomorphisms and ideals of the Lie algebras of vector fields. Invent. Math. 50 (1978), 13-33. | DOI | MR | Zbl
[7] Grabowski, J., Poncin, N.: Automorphisms of quantum and classical Poisson algebras. Compos. Math. 140 (2004), 511-527. | DOI | MR | Zbl
[8] Osborn, J. M.: Automorphisms of the Lie algebras $W^*$ in characteristic $0$. Can. J. Math. 49 (1997), 119-132. | DOI | MR | Zbl
[9] Rudakov, A. N.: Subalgebras and automorphisms of Lie algebras of Cartan type. Funct. Anal. Appl. 20 (1986), 72-73. | DOI | MR | Zbl
[10] Shanks, M. E., Pursell, L. E.: The Lie algebra of a smooth manifold. Proc. Am. Math. Soc. 5 (1954), 468-472. | DOI | MR | Zbl
Cité par Sources :