The classification of finite groups by using iteration digraphs
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1103-1117
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A digraph is associated with a finite group by utilizing the power map ${f\colon G \rightarrow G}$ defined by $f(x)=x^{k}$ for all $x\in G$, where $k$ is a fixed natural number. It is denoted by $\gamma _{G}(n,k)$. In this paper, the generalized quaternion and $2$-groups are studied. The height structure is discussed for the generalized quaternion. The necessary and sufficient conditions on a power digraph of a $2$-group are determined for a $2$-group to be a generalized quaternion group. Further, the classification of two generated $2$-groups as abelian or non-abelian in terms of semi-regularity of the power digraphs is completed.
A digraph is associated with a finite group by utilizing the power map ${f\colon G \rightarrow G}$ defined by $f(x)=x^{k}$ for all $x\in G$, where $k$ is a fixed natural number. It is denoted by $\gamma _{G}(n,k)$. In this paper, the generalized quaternion and $2$-groups are studied. The height structure is discussed for the generalized quaternion. The necessary and sufficient conditions on a power digraph of a $2$-group are determined for a $2$-group to be a generalized quaternion group. Further, the classification of two generated $2$-groups as abelian or non-abelian in terms of semi-regularity of the power digraphs is completed.
DOI : 10.1007/s10587-016-0312-8
Classification : 05C20, 05C25, 05C50, 20B25, 20D15
Keywords: $2$-group; generalized quaternion group; iteration digraph; cycle; indegree; fixed point; regular digraph
@article{10_1007_s10587_016_0312_8,
     author = {Ahmad, Uzma and Moeen, Muqadas},
     title = {The classification of finite groups by using iteration digraphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1103--1117},
     year = {2016},
     volume = {66},
     number = {4},
     doi = {10.1007/s10587-016-0312-8},
     mrnumber = {3572925},
     zbl = {06674864},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0312-8/}
}
TY  - JOUR
AU  - Ahmad, Uzma
AU  - Moeen, Muqadas
TI  - The classification of finite groups by using iteration digraphs
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1103
EP  - 1117
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0312-8/
DO  - 10.1007/s10587-016-0312-8
LA  - en
ID  - 10_1007_s10587_016_0312_8
ER  - 
%0 Journal Article
%A Ahmad, Uzma
%A Moeen, Muqadas
%T The classification of finite groups by using iteration digraphs
%J Czechoslovak Mathematical Journal
%D 2016
%P 1103-1117
%V 66
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0312-8/
%R 10.1007/s10587-016-0312-8
%G en
%F 10_1007_s10587_016_0312_8
Ahmad, Uzma; Moeen, Muqadas. The classification of finite groups by using iteration digraphs. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1103-1117. doi: 10.1007/s10587-016-0312-8

[1] Ahmad, U., Husnine, S.: The power digraphs of finite groups. (to appear) in Util. Math.

[2] Ahmad, U., Husnine, S.: Characterization of power digraphs modulo $n$. Commentat. Math. Univ. Carol. 52 (2011), 359-367. | MR | Zbl

[3] Ahmad, U., Moeen, M.: The digraphs arising by the power maps of generalized quaternion groups. (to appear) in J. Algebra Appl. DOI:10.1142/S0219498817501791. | DOI

[4] Ahmad, U., Syed, H.: On the heights of power digraphs modulo $n$. Czech. Math. J. 62 (2012), 541-556. | DOI | MR | Zbl

[5] Blackburn, N.: Generalizations of certain elementary theorems on {$p$}-groups. Proc. Lond. Math. Soc. (3) 11 (1961), 1-22. | MR | Zbl

[6] Ćepuli{ć}, V., Pyliavska, O. S.: A class of nonabelian nonmetacyclic finite $2$-groups. Glas. Mat., Ser. (3) 41 (2006), 65-70. | DOI | MR | Zbl

[7] Husnine, S. M., Ahmad, U., Somer, L.: On symmetries of power digraphs. Util. Math. 85 (2011), 257-271. | MR | Zbl

[8] Janko, Z.: A classification of finite $2$-groups with exactly three involutions. J. Algebra 291 (2005), 505-533. | DOI | MR | Zbl

[9] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$. Fibonacci Q. 34 (1996), 226-239. | MR | Zbl

[10] Sha, M.: Digraphs from endomorphisms of finite cyclic groups. J. Comb. Math. Comb. Comput. 83 (2012), 105-120. | MR | Zbl

[11] Somer, L., Křížek, M.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. | DOI | MR | Zbl

[12] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58. | MR | Zbl

[13] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$. Discrete Math. 309 (2009), 1999-2009. | DOI | MR | Zbl

[14] Wilson, B.: Power digraphs modulo $n$. Fibonacci Q. 36 (1998), 229-239. | MR | Zbl

Cité par Sources :