Keywords: $2$-group; generalized quaternion group; iteration digraph; cycle; indegree; fixed point; regular digraph
@article{10_1007_s10587_016_0312_8,
author = {Ahmad, Uzma and Moeen, Muqadas},
title = {The classification of finite groups by using iteration digraphs},
journal = {Czechoslovak Mathematical Journal},
pages = {1103--1117},
year = {2016},
volume = {66},
number = {4},
doi = {10.1007/s10587-016-0312-8},
mrnumber = {3572925},
zbl = {06674864},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0312-8/}
}
TY - JOUR AU - Ahmad, Uzma AU - Moeen, Muqadas TI - The classification of finite groups by using iteration digraphs JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1103 EP - 1117 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0312-8/ DO - 10.1007/s10587-016-0312-8 LA - en ID - 10_1007_s10587_016_0312_8 ER -
%0 Journal Article %A Ahmad, Uzma %A Moeen, Muqadas %T The classification of finite groups by using iteration digraphs %J Czechoslovak Mathematical Journal %D 2016 %P 1103-1117 %V 66 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0312-8/ %R 10.1007/s10587-016-0312-8 %G en %F 10_1007_s10587_016_0312_8
Ahmad, Uzma; Moeen, Muqadas. The classification of finite groups by using iteration digraphs. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1103-1117. doi: 10.1007/s10587-016-0312-8
[1] Ahmad, U., Husnine, S.: The power digraphs of finite groups. (to appear) in Util. Math.
[2] Ahmad, U., Husnine, S.: Characterization of power digraphs modulo $n$. Commentat. Math. Univ. Carol. 52 (2011), 359-367. | MR | Zbl
[3] Ahmad, U., Moeen, M.: The digraphs arising by the power maps of generalized quaternion groups. (to appear) in J. Algebra Appl. DOI:10.1142/S0219498817501791. | DOI
[4] Ahmad, U., Syed, H.: On the heights of power digraphs modulo $n$. Czech. Math. J. 62 (2012), 541-556. | DOI | MR | Zbl
[5] Blackburn, N.: Generalizations of certain elementary theorems on {$p$}-groups. Proc. Lond. Math. Soc. (3) 11 (1961), 1-22. | MR | Zbl
[6] Ćepuli{ć}, V., Pyliavska, O. S.: A class of nonabelian nonmetacyclic finite $2$-groups. Glas. Mat., Ser. (3) 41 (2006), 65-70. | DOI | MR | Zbl
[7] Husnine, S. M., Ahmad, U., Somer, L.: On symmetries of power digraphs. Util. Math. 85 (2011), 257-271. | MR | Zbl
[8] Janko, Z.: A classification of finite $2$-groups with exactly three involutions. J. Algebra 291 (2005), 505-533. | DOI | MR | Zbl
[9] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$. Fibonacci Q. 34 (1996), 226-239. | MR | Zbl
[10] Sha, M.: Digraphs from endomorphisms of finite cyclic groups. J. Comb. Math. Comb. Comput. 83 (2012), 105-120. | MR | Zbl
[11] Somer, L., Křížek, M.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. | DOI | MR | Zbl
[12] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58. | MR | Zbl
[13] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$. Discrete Math. 309 (2009), 1999-2009. | DOI | MR | Zbl
[14] Wilson, B.: Power digraphs modulo $n$. Fibonacci Q. 36 (1998), 229-239. | MR | Zbl
Cité par Sources :