Keywords: variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality
@article{10_1007_s10587_016_0311_9,
author = {Szarvas, Krist\'of and Weisz, Ferenc},
title = {Weak- and strong-type inequality for the cone-like maximal operator in variable {Lebesgue} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1079--1101},
year = {2016},
volume = {66},
number = {4},
doi = {10.1007/s10587-016-0311-9},
mrnumber = {3572924},
zbl = {06674863},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0311-9/}
}
TY - JOUR AU - Szarvas, Kristóf AU - Weisz, Ferenc TI - Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1079 EP - 1101 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0311-9/ DO - 10.1007/s10587-016-0311-9 LA - en ID - 10_1007_s10587_016_0311_9 ER -
%0 Journal Article %A Szarvas, Kristóf %A Weisz, Ferenc %T Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces %J Czechoslovak Mathematical Journal %D 2016 %P 1079-1101 %V 66 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0311-9/ %R 10.1007/s10587-016-0311-9 %G en %F 10_1007_s10587_016_0311_9
Szarvas, Kristóf; Weisz, Ferenc. Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1079-1101. doi: 10.1007/s10587-016-0311-9
[1] Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394 (2012), 781-795. | DOI | MR | Zbl
[2] Besicovitch, A. S.: A general form of the covering principle and relative differentiation of additive functions. Proc. Camb. Philos. Soc. 41 (1945), 103-110. | DOI | MR | Zbl
[3] Besicovitch, A. S.: A general form of the covering principle and relative differentiation of additive functions II. Proc. Camb. Philos. Soc. 42 (1946), 1-10. | DOI | MR | Zbl
[4] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. | MR | Zbl
[5] Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14 (2011), 361-374. | DOI | MR | Zbl
[6] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). | MR | Zbl
[7] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl
[8] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR | Zbl
[9] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394 (2012), 744-760. | DOI | MR | Zbl
[10] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522. | MR | Zbl
[11] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl
[12] Gát, G.: Pointwise convergence of cone-like restricted two-dimensional {$(C,1)$} means of trigonometric Fourier series. J. Approximation Theory 149 (2007), 74-102. | DOI | MR | Zbl
[13] Kopaliani, T.: Interpolation theorems for variable exponent Lebesgue spaces. J. Funct. Anal. 257 (2009), 3541-3551. | DOI | MR | Zbl
[14] Kováčik, O., k, J. Rákosní: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR
[15] Marcinkiewicz, J., Zygmund, A.: On the summability of double Fourier series. Fundam. Math. 32 (1939), 122-132. | DOI | Zbl
[16] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44 Cambridge University Press, Cambridge (1999). | MR | Zbl
[17] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series 43 Princeton University Press, Princeton (1993). | MR | Zbl
[18] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series Princeton University Press, Princeton (1971). | MR | Zbl
[19] Szarvas, K., Weisz, F.: Convergence of integral operators and applications. Period. Math. Hung. 73 (2016), 1-27.
[20] Weisz, F.: Summability of Multi-Dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications 541 Springer, Dordrecht (2002). | MR | Zbl
[21] Weisz, F.: Herz spaces and restricted summability of Fourier transforms and Fourier series. J. Math. Anal. Appl. 344 (2008), 42-54. | DOI | MR | Zbl
[22] Weisz, F.: Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory (electronic only) 7 (2012), 1-179. | MR | Zbl
Cité par Sources :