Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1079-1101
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_{p}(\mathbb {R}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_{-} = \inf \{ p(x) \colon x \in \mathbb R^d \} > 1$) on the variable Lebesgue spaces $L_{p(\cdot )}(\mathbb {R}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch's covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_{s}^{\gamma ,\delta }$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_{-} > s$, where $1 \leq s \leq \infty $ is arbitrary (or $p_{-} \geq s$), then the maximal operator $M_{s}^{\gamma ,\delta }$ is bounded on the space $L_{p(\cdot )}(\mathbb {R}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).
The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_{p}(\mathbb {R}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_{-} = \inf \{ p(x) \colon x \in \mathbb R^d \} > 1$) on the variable Lebesgue spaces $L_{p(\cdot )}(\mathbb {R}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch's covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_{s}^{\gamma ,\delta }$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_{-} > s$, where $1 \leq s \leq \infty $ is arbitrary (or $p_{-} \geq s$), then the maximal operator $M_{s}^{\gamma ,\delta }$ is bounded on the space $L_{p(\cdot )}(\mathbb {R}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).
DOI : 10.1007/s10587-016-0311-9
Classification : 42B25, 42B35, 52C17
Keywords: variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality
@article{10_1007_s10587_016_0311_9,
     author = {Szarvas, Krist\'of and Weisz, Ferenc},
     title = {Weak- and strong-type inequality for the cone-like maximal operator in variable {Lebesgue} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1079--1101},
     year = {2016},
     volume = {66},
     number = {4},
     doi = {10.1007/s10587-016-0311-9},
     mrnumber = {3572924},
     zbl = {06674863},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0311-9/}
}
TY  - JOUR
AU  - Szarvas, Kristóf
AU  - Weisz, Ferenc
TI  - Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1079
EP  - 1101
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0311-9/
DO  - 10.1007/s10587-016-0311-9
LA  - en
ID  - 10_1007_s10587_016_0311_9
ER  - 
%0 Journal Article
%A Szarvas, Kristóf
%A Weisz, Ferenc
%T Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
%J Czechoslovak Mathematical Journal
%D 2016
%P 1079-1101
%V 66
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0311-9/
%R 10.1007/s10587-016-0311-9
%G en
%F 10_1007_s10587_016_0311_9
Szarvas, Kristóf; Weisz, Ferenc. Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1079-1101. doi: 10.1007/s10587-016-0311-9

[1] Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394 (2012), 781-795. | DOI | MR | Zbl

[2] Besicovitch, A. S.: A general form of the covering principle and relative differentiation of additive functions. Proc. Camb. Philos. Soc. 41 (1945), 103-110. | DOI | MR | Zbl

[3] Besicovitch, A. S.: A general form of the covering principle and relative differentiation of additive functions II. Proc. Camb. Philos. Soc. 42 (1946), 1-10. | DOI | MR | Zbl

[4] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. | MR | Zbl

[5] Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14 (2011), 361-374. | DOI | MR | Zbl

[6] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). | MR | Zbl

[7] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl

[8] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR | Zbl

[9] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394 (2012), 744-760. | DOI | MR | Zbl

[10] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522. | MR | Zbl

[11] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl

[12] Gát, G.: Pointwise convergence of cone-like restricted two-dimensional {$(C,1)$} means of trigonometric Fourier series. J. Approximation Theory 149 (2007), 74-102. | DOI | MR | Zbl

[13] Kopaliani, T.: Interpolation theorems for variable exponent Lebesgue spaces. J. Funct. Anal. 257 (2009), 3541-3551. | DOI | MR | Zbl

[14] Kováčik, O., k, J. Rákosní: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR

[15] Marcinkiewicz, J., Zygmund, A.: On the summability of double Fourier series. Fundam. Math. 32 (1939), 122-132. | DOI | Zbl

[16] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44 Cambridge University Press, Cambridge (1999). | MR | Zbl

[17] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series 43 Princeton University Press, Princeton (1993). | MR | Zbl

[18] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series Princeton University Press, Princeton (1971). | MR | Zbl

[19] Szarvas, K., Weisz, F.: Convergence of integral operators and applications. Period. Math. Hung. 73 (2016), 1-27.

[20] Weisz, F.: Summability of Multi-Dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications 541 Springer, Dordrecht (2002). | MR | Zbl

[21] Weisz, F.: Herz spaces and restricted summability of Fourier transforms and Fourier series. J. Math. Anal. Appl. 344 (2008), 42-54. | DOI | MR | Zbl

[22] Weisz, F.: Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory (electronic only) 7 (2012), 1-179. | MR | Zbl

Cité par Sources :