Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1059-1078
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $F$ be a finite field of characteristic $p$ and $K$ a field which contains a primitive $p$th root of unity and ${\rm char} K\neq p$. Suppose that a classical group $G$ acts on the $F$-vector space $V$. Then it can induce the actions on the vector space $V\oplus V$ and on the group algebra $K[V\oplus V]$, respectively. In this paper we determine the structure of $G$-invariant ideals of the group algebra $K[V\oplus V]$, and establish the relationship between the invariant ideals of $K[V]$ and the vector invariant ideals of $K[V\oplus V]$, if $G$ is a unitary group or orthogonal group. Combining the results obtained by Nan and Zeng (2013), we solve the problem of vector invariant ideals for all classical groups over finite fields.
Let $F$ be a finite field of characteristic $p$ and $K$ a field which contains a primitive $p$th root of unity and ${\rm char} K\neq p$. Suppose that a classical group $G$ acts on the $F$-vector space $V$. Then it can induce the actions on the vector space $V\oplus V$ and on the group algebra $K[V\oplus V]$, respectively. In this paper we determine the structure of $G$-invariant ideals of the group algebra $K[V\oplus V]$, and establish the relationship between the invariant ideals of $K[V]$ and the vector invariant ideals of $K[V\oplus V]$, if $G$ is a unitary group or orthogonal group. Combining the results obtained by Nan and Zeng (2013), we solve the problem of vector invariant ideals for all classical groups over finite fields.
DOI : 10.1007/s10587-016-0310-x
Classification : 16S34, 20G40
Keywords: vector invariant ideal; group algebra; unitary group; orthogonal group
@article{10_1007_s10587_016_0310_x,
     author = {Zeng, Lingli and Nan, Jizhu},
     title = {Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1059--1078},
     year = {2016},
     volume = {66},
     number = {4},
     doi = {10.1007/s10587-016-0310-x},
     mrnumber = {3572923},
     zbl = {06674862},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0310-x/}
}
TY  - JOUR
AU  - Zeng, Lingli
AU  - Nan, Jizhu
TI  - Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1059
EP  - 1078
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0310-x/
DO  - 10.1007/s10587-016-0310-x
LA  - en
ID  - 10_1007_s10587_016_0310_x
ER  - 
%0 Journal Article
%A Zeng, Lingli
%A Nan, Jizhu
%T Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups
%J Czechoslovak Mathematical Journal
%D 2016
%P 1059-1078
%V 66
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0310-x/
%R 10.1007/s10587-016-0310-x
%G en
%F 10_1007_s10587_016_0310_x
Zeng, Lingli; Nan, Jizhu. Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1059-1078. doi: 10.1007/s10587-016-0310-x

[1] Brookes, C. J. B., Evans, D. M.: Augmentation modules for affine groups. Math. Proc. Camb. Philos. Soc. 130 (2001), 287-294. | DOI | MR | Zbl

[2] Nan, J., Zeng, L.: Vector invariant ideals of abelian group algebras under the action of the symplectic groups. J. Algebra Appl. 12 (2013), Article ID 1350046, 12 pages. | MR | Zbl

[3] Osterburg, J. M., Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field II. Proc. Am. Math. Soc. 130 (2002), 951-957. | DOI | MR

[4] Passman, D. S.: Invariant ideals of abelian group algebras under the action of simple linear groups. Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 377-390. | MR | Zbl

[5] Passman, D. S.: Finitary actions and invariant ideals. Turk. J. Math. 31, Suppl., (2007), 113-130. | MR | Zbl

[6] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field I. J. Algebra 324 (2010), 3035-3043. | DOI | MR | Zbl

[7] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field II. J. Algebra 331 (2011), 362-377. | DOI | MR | Zbl

[8] Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field I. Proc. Am. Math. Soc. 130 (2002), 939-949. | DOI | MR

[9] Richman, D. R.: On vector invariants over finite fields. Adv. Math. 81 (1990), 30-65. | DOI | MR | Zbl

[10] Richman, D. R.: Explicit generators of the invariants of finite groups. Adv. Math. 124 (1996), 49-76. | DOI | MR | Zbl

[11] Richman, D. R.: Invariants of finite groups over fields of characteristic $p$. Adv. Math. 124 (1996), 25-48. | DOI | MR | Zbl

[12] Wan, Z.: Geometry of classical groups over finite fields and its applications. Discrete Math. 174 (1997), 365-381. | DOI | MR | Zbl

Cité par Sources :