A new family of spectrally arbitrary ray patterns
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1049-1058
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An $n\times n$ ray pattern $\mathcal {A}$ is called a spectrally arbitrary ray pattern if the complex matrices in $Q(\mathcal {A})$ give rise to all possible complex polynomials of degree $n$. \endgraf In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an $n\times n$ irreducible spectrally arbitrary ray pattern is $3n-1$. In this paper, we introduce a new family of spectrally arbitrary ray patterns of order $n$ with exactly $3n-1$ nonzeros.
An $n\times n$ ray pattern $\mathcal {A}$ is called a spectrally arbitrary ray pattern if the complex matrices in $Q(\mathcal {A})$ give rise to all possible complex polynomials of degree $n$. \endgraf In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an $n\times n$ irreducible spectrally arbitrary ray pattern is $3n-1$. In this paper, we introduce a new family of spectrally arbitrary ray patterns of order $n$ with exactly $3n-1$ nonzeros.
DOI : 10.1007/s10587-016-0309-3
Classification : 15A18, 15A29
Keywords: ray pattern; potentially nilpotent; spectrally arbitrary ray pattern
@article{10_1007_s10587_016_0309_3,
     author = {Mei, Yinzhen and Gao, Yubin and Shao, Yanling and Wang, Peng},
     title = {A new family of spectrally arbitrary ray patterns},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1058},
     year = {2016},
     volume = {66},
     number = {4},
     doi = {10.1007/s10587-016-0309-3},
     mrnumber = {3572922},
     zbl = {06674861},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0309-3/}
}
TY  - JOUR
AU  - Mei, Yinzhen
AU  - Gao, Yubin
AU  - Shao, Yanling
AU  - Wang, Peng
TI  - A new family of spectrally arbitrary ray patterns
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1049
EP  - 1058
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0309-3/
DO  - 10.1007/s10587-016-0309-3
LA  - en
ID  - 10_1007_s10587_016_0309_3
ER  - 
%0 Journal Article
%A Mei, Yinzhen
%A Gao, Yubin
%A Shao, Yanling
%A Wang, Peng
%T A new family of spectrally arbitrary ray patterns
%J Czechoslovak Mathematical Journal
%D 2016
%P 1049-1058
%V 66
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0309-3/
%R 10.1007/s10587-016-0309-3
%G en
%F 10_1007_s10587_016_0309_3
Mei, Yinzhen; Gao, Yubin; Shao, Yanling; Wang, Peng. A new family of spectrally arbitrary ray patterns. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1049-1058. doi: 10.1007/s10587-016-0309-3

[1] Drew, J. H., Johnson, C. R., Olesky, D. D., Driessche, P. van den: Spectrally arbitrary patterns. Linear Algebra Appl. 308 (2000), 121-137. | MR

[2] Gao, Y., Shao, Y.: New classes of spectrally arbitrary ray patterns. Linear Algebra Appl. 434 (2011), 2140-2148. | MR | Zbl

[3] McDonald, J. J., Stuart, J.: Spectrally arbitrary ray patterns. Linear Algebra Appl. 429 (2008), 727-734. | MR | Zbl

[4] Mei, Y., Gao, Y., Shao, Y., Wang, P.: The minimum number of nonzeros in a spectrally arbitrary ray pattern. Linear Algebra Appl. 453 (2014), 99-109. | MR | Zbl

Cité par Sources :