A new family of spectrally arbitrary ray patterns
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1049-1058
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An $n\times n$ ray pattern $\mathcal {A}$ is called a spectrally arbitrary ray pattern if the complex matrices in $Q(\mathcal {A})$ give rise to all possible complex polynomials of degree $n$. \endgraf In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an $n\times n$ irreducible spectrally arbitrary ray pattern is $3n-1$. In this paper, we introduce a new family of spectrally arbitrary ray patterns of order $n$ with exactly $3n-1$ nonzeros.
An $n\times n$ ray pattern $\mathcal {A}$ is called a spectrally arbitrary ray pattern if the complex matrices in $Q(\mathcal {A})$ give rise to all possible complex polynomials of degree $n$. \endgraf In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an $n\times n$ irreducible spectrally arbitrary ray pattern is $3n-1$. In this paper, we introduce a new family of spectrally arbitrary ray patterns of order $n$ with exactly $3n-1$ nonzeros.
DOI :
10.1007/s10587-016-0309-3
Classification :
15A18, 15A29
Keywords: ray pattern; potentially nilpotent; spectrally arbitrary ray pattern
Keywords: ray pattern; potentially nilpotent; spectrally arbitrary ray pattern
@article{10_1007_s10587_016_0309_3,
author = {Mei, Yinzhen and Gao, Yubin and Shao, Yanling and Wang, Peng},
title = {A new family of spectrally arbitrary ray patterns},
journal = {Czechoslovak Mathematical Journal},
pages = {1049--1058},
year = {2016},
volume = {66},
number = {4},
doi = {10.1007/s10587-016-0309-3},
mrnumber = {3572922},
zbl = {06674861},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0309-3/}
}
TY - JOUR AU - Mei, Yinzhen AU - Gao, Yubin AU - Shao, Yanling AU - Wang, Peng TI - A new family of spectrally arbitrary ray patterns JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1049 EP - 1058 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0309-3/ DO - 10.1007/s10587-016-0309-3 LA - en ID - 10_1007_s10587_016_0309_3 ER -
%0 Journal Article %A Mei, Yinzhen %A Gao, Yubin %A Shao, Yanling %A Wang, Peng %T A new family of spectrally arbitrary ray patterns %J Czechoslovak Mathematical Journal %D 2016 %P 1049-1058 %V 66 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0309-3/ %R 10.1007/s10587-016-0309-3 %G en %F 10_1007_s10587_016_0309_3
Mei, Yinzhen; Gao, Yubin; Shao, Yanling; Wang, Peng. A new family of spectrally arbitrary ray patterns. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1049-1058. doi: 10.1007/s10587-016-0309-3
Cité par Sources :