Keywords: spectral radius; (signless) Laplacian spectral radius; clique number
@article{10_1007_s10587_016_0308_4,
author = {Das, Kinkar Ch. and Liu, Muhuo},
title = {Quotient of spectral radius, (signless) {Laplacian} spectral radius and clique number of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {1039--1048},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0308-4},
mrnumber = {3556883},
zbl = {06644049},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0308-4/}
}
TY - JOUR AU - Das, Kinkar Ch. AU - Liu, Muhuo TI - Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1039 EP - 1048 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0308-4/ DO - 10.1007/s10587-016-0308-4 LA - en ID - 10_1007_s10587_016_0308_4 ER -
%0 Journal Article %A Das, Kinkar Ch. %A Liu, Muhuo %T Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs %J Czechoslovak Mathematical Journal %D 2016 %P 1039-1048 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0308-4/ %R 10.1007/s10587-016-0308-4 %G en %F 10_1007_s10587_016_0308_4
Das, Kinkar Ch.; Liu, Muhuo. Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1039-1048. doi: 10.1007/s10587-016-0308-4
[1] Aouchiche, M.: Comparaison Automatise d'Invariants en Théorie des Graphes. PhD Thesis. École Polytechnique de Montréal (2006), French. | MR
[2] Bruardi, R. A., Hoffman, A. J.: On the spectral radius of $(0,1)$-matrices. Linear Algebra Appl. 65 (1985), 133-146. | DOI | MR
[3] Cai, G.-X., Fan, Y.-Z.: The signless Laplacian spectral radius of graphs with given chromatic number. Math. Appl. 22 (2009), 161-167. | MR | Zbl
[4] Feng, L., Li, Q., Zhang, X.-D.: Spectral radii of graphs with given chromatic number. Appl. Math. Lett. 20 (2007), 158-162. | DOI | MR | Zbl
[5] Guo, J.-M., Li, J., Shiu, W. C.: The smallest Laplacian spectral radius of graphs with a given clique number. Linear Algebra Appl. 437 (2012), 1109-1122. | MR | Zbl
[6] Hansen, P., Lucas, C.: Bounds and conjectures for the signless Laplacian index of graphs. Linear Algebra Appl. 432 (2010), 3319-3336. | DOI | MR | Zbl
[7] Hansen, P., Lucas, C.: An inequality for the signless Laplacian index of a graph using the chromatic number. Graph Theory Notes N. Y. 57 (2009), 39-42. | MR
[8] He, B., Jin, Y.-L., Zhang, X.-D.: Sharp bounds for the signless Laplacian spectral radius in terms of clique number. Linear Algebra Appl. 438 (2013), 3851-3861. | MR | Zbl
[9] Hoffman, A. J., Smith, J. H.: On the spectral radii of topologically equivalent graphs. Recent Adv. Graph Theory, Proc. Symp. Prague 1974 Academia, Praha (1975), 273-281. | MR | Zbl
[10] Liu, J., Liu, B.: The maximum clique and the signless Laplacian eigenvalues. Czech. Math. J. 58 (2008), 1233-1240. | DOI | MR | Zbl
[11] Liu, M., Tan, X., Liu, B.: The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Czech. Math. J. 60 (2010), 849-867. | DOI | MR | Zbl
[12] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[13] Nikiforov, V.: Bounds on graph eigenvalues II. Linear Algebra Appl. 427 (2007), 183-189. | MR | Zbl
[14] Stevanović, D., Hansen, P.: The minimum spectral radius of graphs with a given clique number. Electron. J. Linear Algebra (electronic only) 17 (2008), 110-117. | MR | Zbl
[15] Zhang, J.-M., Huang, T.-Z., Guo, J.-M.: The smallest signless Laplacian spectral radius of graphs with a given clique number. Linear Algebra Appl. 439 (2013), 2562-2576. | MR | Zbl
Cité par Sources :