Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1039-1048 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the upper and lower bounds for the quotient of spectral radius (Laplacian spectral radius, signless Laplacian spectral radius) and the clique number together with the corresponding extremal graphs in the class of connected graphs with $n$ vertices and clique number $\omega $ $(2\leq \omega \leq n)$ are determined. As a consequence of our results, two conjectures given in Aouchiche (2006) and Hansen (2010) are proved.
In this paper, the upper and lower bounds for the quotient of spectral radius (Laplacian spectral radius, signless Laplacian spectral radius) and the clique number together with the corresponding extremal graphs in the class of connected graphs with $n$ vertices and clique number $\omega $ $(2\leq \omega \leq n)$ are determined. As a consequence of our results, two conjectures given in Aouchiche (2006) and Hansen (2010) are proved.
DOI : 10.1007/s10587-016-0308-4
Classification : 05C50, 05C75
Keywords: spectral radius; (signless) Laplacian spectral radius; clique number
@article{10_1007_s10587_016_0308_4,
     author = {Das, Kinkar Ch. and Liu, Muhuo},
     title = {Quotient of spectral radius, (signless) {Laplacian} spectral radius and clique number of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1039--1048},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0308-4},
     mrnumber = {3556883},
     zbl = {06644049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0308-4/}
}
TY  - JOUR
AU  - Das, Kinkar Ch.
AU  - Liu, Muhuo
TI  - Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1039
EP  - 1048
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0308-4/
DO  - 10.1007/s10587-016-0308-4
LA  - en
ID  - 10_1007_s10587_016_0308_4
ER  - 
%0 Journal Article
%A Das, Kinkar Ch.
%A Liu, Muhuo
%T Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
%J Czechoslovak Mathematical Journal
%D 2016
%P 1039-1048
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0308-4/
%R 10.1007/s10587-016-0308-4
%G en
%F 10_1007_s10587_016_0308_4
Das, Kinkar Ch.; Liu, Muhuo. Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1039-1048. doi: 10.1007/s10587-016-0308-4

[1] Aouchiche, M.: Comparaison Automatise d'Invariants en Théorie des Graphes. PhD Thesis. École Polytechnique de Montréal (2006), French. | MR

[2] Bruardi, R. A., Hoffman, A. J.: On the spectral radius of $(0,1)$-matrices. Linear Algebra Appl. 65 (1985), 133-146. | DOI | MR

[3] Cai, G.-X., Fan, Y.-Z.: The signless Laplacian spectral radius of graphs with given chromatic number. Math. Appl. 22 (2009), 161-167. | MR | Zbl

[4] Feng, L., Li, Q., Zhang, X.-D.: Spectral radii of graphs with given chromatic number. Appl. Math. Lett. 20 (2007), 158-162. | DOI | MR | Zbl

[5] Guo, J.-M., Li, J., Shiu, W. C.: The smallest Laplacian spectral radius of graphs with a given clique number. Linear Algebra Appl. 437 (2012), 1109-1122. | MR | Zbl

[6] Hansen, P., Lucas, C.: Bounds and conjectures for the signless Laplacian index of graphs. Linear Algebra Appl. 432 (2010), 3319-3336. | DOI | MR | Zbl

[7] Hansen, P., Lucas, C.: An inequality for the signless Laplacian index of a graph using the chromatic number. Graph Theory Notes N. Y. 57 (2009), 39-42. | MR

[8] He, B., Jin, Y.-L., Zhang, X.-D.: Sharp bounds for the signless Laplacian spectral radius in terms of clique number. Linear Algebra Appl. 438 (2013), 3851-3861. | MR | Zbl

[9] Hoffman, A. J., Smith, J. H.: On the spectral radii of topologically equivalent graphs. Recent Adv. Graph Theory, Proc. Symp. Prague 1974 Academia, Praha (1975), 273-281. | MR | Zbl

[10] Liu, J., Liu, B.: The maximum clique and the signless Laplacian eigenvalues. Czech. Math. J. 58 (2008), 1233-1240. | DOI | MR | Zbl

[11] Liu, M., Tan, X., Liu, B.: The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Czech. Math. J. 60 (2010), 849-867. | DOI | MR | Zbl

[12] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl

[13] Nikiforov, V.: Bounds on graph eigenvalues II. Linear Algebra Appl. 427 (2007), 183-189. | MR | Zbl

[14] Stevanović, D., Hansen, P.: The minimum spectral radius of graphs with a given clique number. Electron. J. Linear Algebra (electronic only) 17 (2008), 110-117. | MR | Zbl

[15] Zhang, J.-M., Huang, T.-Z., Guo, J.-M.: The smallest signless Laplacian spectral radius of graphs with a given clique number. Linear Algebra Appl. 439 (2013), 2562-2576. | MR | Zbl

Cité par Sources :