Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1027-1038
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the $n\times n$ matrix with $(i,j)$'th entry $\gcd {(i,j)}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^{-2}n\log {n}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969).
Consider the $n\times n$ matrix with $(i,j)$'th entry $\gcd {(i,j)}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^{-2}n\log {n}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969).
DOI : 10.1007/s10587-016-0307-5
Classification : 11A05, 15A42, 15B36
Keywords: eigenvalue bounds; greatest common divisor matrix
@article{10_1007_s10587_016_0307_5,
     author = {Merikoski, Jorma K.},
     title = {Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1027--1038},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0307-5},
     mrnumber = {3556882},
     zbl = {06644048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0307-5/}
}
TY  - JOUR
AU  - Merikoski, Jorma K.
TI  - Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1027
EP  - 1038
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0307-5/
DO  - 10.1007/s10587-016-0307-5
LA  - en
ID  - 10_1007_s10587_016_0307_5
ER  - 
%0 Journal Article
%A Merikoski, Jorma K.
%T Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$
%J Czechoslovak Mathematical Journal
%D 2016
%P 1027-1038
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0307-5/
%R 10.1007/s10587-016-0307-5
%G en
%F 10_1007_s10587_016_0307_5
Merikoski, Jorma K. Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1027-1038. doi: 10.1007/s10587-016-0307-5

[1] Altınışık, E., Keskin, A., Yıldız, M., Demirbüken, M.: On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices. Linear Algebra Appl. 493 (2016), 1-13. | MR | Zbl

[2] Balatoni, F.: On the eigenvalues of the matrix of the Smith determinant. Mat. Lapok 20 (1969), 397-403 Hungarian. | MR | Zbl

[3] Beslin, S., Ligh, S.: Greatest common divisor matrices. Linear Algebra Appl. 118 (1989), 69-76. | MR | Zbl

[4] Hong, S., Loewy, R.: Asymptotic behavior of eigenvalues of greatest common divisor matrices. Glasg. Math. J. 46 (2004), 551-569. | DOI | MR | Zbl

[5] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | MR | Zbl

[6] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory. Mathematics and Its Applications 351 Kluwer Academic Publishers, Dordrecht (1995). | MR | Zbl

[7] Smith, H. J. S.: On the value of a certain arithmetical determinant. Proc. L. M. S. 7 208-213 (1875). | MR

[8] Tóth, L.: A survey of gcd-sum functions. J. Integer Seq. (electronic only) 13 (2010), Article ID 10.8.1, 23 pages. | MR | Zbl

[9] Yaglom, A. M., Yaglom, I. M.: Non-elementary Problems in an Elementary Exposition. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva (1954), Russian. | MR

[10] Weisstein, E. W.: Faulhaber's Formula. From Mathworld---A Wolfram Web Resource, http://mathworld.wolfram.com/FaulhabersFormula.html

Cité par Sources :