Keywords: eigenvalue bounds; greatest common divisor matrix
@article{10_1007_s10587_016_0307_5,
author = {Merikoski, Jorma K.},
title = {Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$},
journal = {Czechoslovak Mathematical Journal},
pages = {1027--1038},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0307-5},
mrnumber = {3556882},
zbl = {06644048},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0307-5/}
}
TY - JOUR
AU - Merikoski, Jorma K.
TI - Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$
JO - Czechoslovak Mathematical Journal
PY - 2016
SP - 1027
EP - 1038
VL - 66
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0307-5/
DO - 10.1007/s10587-016-0307-5
LA - en
ID - 10_1007_s10587_016_0307_5
ER -
%0 Journal Article
%A Merikoski, Jorma K.
%T Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$
%J Czechoslovak Mathematical Journal
%D 2016
%P 1027-1038
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0307-5/
%R 10.1007/s10587-016-0307-5
%G en
%F 10_1007_s10587_016_0307_5
Merikoski, Jorma K. Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1027-1038. doi: 10.1007/s10587-016-0307-5
[1] Altınışık, E., Keskin, A., Yıldız, M., Demirbüken, M.: On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices. Linear Algebra Appl. 493 (2016), 1-13. | MR | Zbl
[2] Balatoni, F.: On the eigenvalues of the matrix of the Smith determinant. Mat. Lapok 20 (1969), 397-403 Hungarian. | MR | Zbl
[3] Beslin, S., Ligh, S.: Greatest common divisor matrices. Linear Algebra Appl. 118 (1989), 69-76. | MR | Zbl
[4] Hong, S., Loewy, R.: Asymptotic behavior of eigenvalues of greatest common divisor matrices. Glasg. Math. J. 46 (2004), 551-569. | DOI | MR | Zbl
[5] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | MR | Zbl
[6] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory. Mathematics and Its Applications 351 Kluwer Academic Publishers, Dordrecht (1995). | MR | Zbl
[7] Smith, H. J. S.: On the value of a certain arithmetical determinant. Proc. L. M. S. 7 208-213 (1875). | MR
[8] Tóth, L.: A survey of gcd-sum functions. J. Integer Seq. (electronic only) 13 (2010), Article ID 10.8.1, 23 pages. | MR | Zbl
[9] Yaglom, A. M., Yaglom, I. M.: Non-elementary Problems in an Elementary Exposition. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva (1954), Russian. | MR
[10] Weisstein, E. W.: Faulhaber's Formula. From Mathworld---A Wolfram Web Resource, http://mathworld.wolfram.com/FaulhabersFormula.html
Cité par Sources :