The real symmetric matrices of odd order with a P-set of maximum size
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1007-1026
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose that $A$ is a real symmetric matrix of order $n$. Denote by $m_A(0)$ the nullity of $A$. For a nonempty subset $\alpha $ of $\{1,2,\ldots ,n\}$, let $A(\alpha )$ be the principal submatrix of $A$ obtained from $A$ by deleting the rows and columns indexed by $\alpha $. When $m_{A(\alpha )}(0)=m_{A}(0)+|\alpha |$, we call $\alpha $ a P-set of $A$. It is known that every P-set of $A$ contains at most $\lfloor {n}/{2} \rfloor $ elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs $G$ under which there is a real symmetric matrix $A$ whose graph is $G$ and contains a P-set of size ${(n-1)}/{2}$.
Suppose that $A$ is a real symmetric matrix of order $n$. Denote by $m_A(0)$ the nullity of $A$. For a nonempty subset $\alpha $ of $\{1,2,\ldots ,n\}$, let $A(\alpha )$ be the principal submatrix of $A$ obtained from $A$ by deleting the rows and columns indexed by $\alpha $. When $m_{A(\alpha )}(0)=m_{A}(0)+|\alpha |$, we call $\alpha $ a P-set of $A$. It is known that every P-set of $A$ contains at most $\lfloor {n}/{2} \rfloor $ elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs $G$ under which there is a real symmetric matrix $A$ whose graph is $G$ and contains a P-set of size ${(n-1)}/{2}$.
DOI : 10.1007/s10587-016-0306-6
Classification : 05C50, 15A18
Keywords: real symmetric matrix; graph; multiplicity of eigenvalues; P-set; P-vertices
@article{10_1007_s10587_016_0306_6,
     author = {Du, Zhibin and da Fonseca, Carlos M.},
     title = {The real symmetric matrices of odd order with a {P-set} of maximum size},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1007--1026},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0306-6},
     mrnumber = {3556881},
     zbl = {06644047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0306-6/}
}
TY  - JOUR
AU  - Du, Zhibin
AU  - da Fonseca, Carlos M.
TI  - The real symmetric matrices of odd order with a P-set of maximum size
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1007
EP  - 1026
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0306-6/
DO  - 10.1007/s10587-016-0306-6
LA  - en
ID  - 10_1007_s10587_016_0306_6
ER  - 
%0 Journal Article
%A Du, Zhibin
%A da Fonseca, Carlos M.
%T The real symmetric matrices of odd order with a P-set of maximum size
%J Czechoslovak Mathematical Journal
%D 2016
%P 1007-1026
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0306-6/
%R 10.1007/s10587-016-0306-6
%G en
%F 10_1007_s10587_016_0306_6
Du, Zhibin; da Fonseca, Carlos M. The real symmetric matrices of odd order with a P-set of maximum size. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1007-1026. doi: 10.1007/s10587-016-0306-6

[1] An{\dj}elić, M., Erić, A., Fonseca, C. M. da: Nonsingular acyclic matrices with full number of P-vertices. Linear Multilinear Algebra 61 (2013), 49-57; erratum ibid. 61 (2013), 1159-1160. | DOI | MR | Zbl

[2] An{\dj}elić, M., Fonseca, C. M. da, Mamede, R.: On the number of P-vertices of some graphs. Linear Algebra Appl. 434 (2011), 514-525. | DOI | MR | Zbl

[3] Cvetković, D., Rowlinson, P., Simić, S.: A study of eigenspaces of graphs. Linear Algebra Appl. 182 (1993), 45-66. | DOI | MR | Zbl

[4] Du, Z.: The real symmetric matrices with a P-set of maximum size and their associated graphs. J. South China Norm. Univ., Nat. Sci. Ed. 48 (2016), 119-122. | MR | Zbl

[5] Du, Z., Fonseca, C. M. da: The singular acyclic matrices of even order with a P-set of maximum size. (to appear) in Filomat.

[6] Du, Z., Fonseca, C. M. da: The acyclic matrices with a P-set of maximum size. Linear Algebra Appl. 468 (2015), 27-37. | MR | Zbl

[7] Du, Z., Fonseca, C. M. da: The singular acyclic matrices with the second largest number of P-vertices. Linear Multilinear Algebra 63 (2015), 2103-2120. | DOI | MR | Zbl

[8] Du, Z., Fonseca, C. M. da: Nonsingular acyclic matrices with an extremal number of P-vertices. Linear Algebra Appl. 442 (2014), 2-19. | MR | Zbl

[9] Du, Z., Fonseca, C. M. da: The singular acyclic matrices with maximal number of P-vertices. Linear Algebra Appl. 438 (2013), 2274-2279. | MR | Zbl

[10] Erić, A., Fonseca, C. M. da: The maximum number of P-vertices of some nonsingular double star matrices. Discrete Math. 313 (2013), 2192-2194. | DOI | MR | Zbl

[11] Fernandes, R., Cruz, H. F. da: Sets of Parter vertices which are Parter sets. Linear Algebra Appl. 448 (2014), 37-54. | MR | Zbl

[12] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | MR | Zbl

[13] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.: The Parter-Wiener theorem: Refinement and generalization. SIAM J. Matrix Anal. Appl. 25 (2003), 352-361. | DOI | MR

[14] Johnson, C. R., Sutton, B. D.: Hermitian matrices, eigenvalue multiplicities, and eigenvector components. SIAM J. Matrix Anal. Appl. 26 (2004), 390-399. | DOI | MR | Zbl

[15] Kim, I.-J., Shader, B. L.: Non-singular acyclic matrices. Linear Multilinear Algebra 57 (2009), 399-407. | DOI | MR | Zbl

[16] Kim, I.-J., Shader, B. L.: On Fiedler- and Parter-vertices of acyclic matrices. Linear Algebra Appl. 428 (2008), 2601-2613. | DOI | MR | Zbl

[17] Nelson, C., Shader, B.: All pairs suffice for a P-set. Linear Algebra Appl. 475 (2015), 114-118. | MR | Zbl

[18] Nelson, C., Shader, B.: Maximal P-sets of matrices whose graph is a tree. Linear Algebra Appl. 485 (2015), 485-502. | MR | Zbl

[19] Sciriha, I.: A characterization of singular graphs. Electron. J. Linear Algebra (electronic only) 16 (2007), 451-462. | MR | Zbl

[20] Sciriha, I.: On the construction of graphs of nullity one. Discrete Math. 181 (1998), 193-211. | DOI | MR | Zbl

Cité par Sources :