Keywords: real symmetric matrix; graph; multiplicity of eigenvalues; P-set; P-vertices
@article{10_1007_s10587_016_0306_6,
author = {Du, Zhibin and da Fonseca, Carlos M.},
title = {The real symmetric matrices of odd order with a {P-set} of maximum size},
journal = {Czechoslovak Mathematical Journal},
pages = {1007--1026},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0306-6},
mrnumber = {3556881},
zbl = {06644047},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0306-6/}
}
TY - JOUR AU - Du, Zhibin AU - da Fonseca, Carlos M. TI - The real symmetric matrices of odd order with a P-set of maximum size JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1007 EP - 1026 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0306-6/ DO - 10.1007/s10587-016-0306-6 LA - en ID - 10_1007_s10587_016_0306_6 ER -
%0 Journal Article %A Du, Zhibin %A da Fonseca, Carlos M. %T The real symmetric matrices of odd order with a P-set of maximum size %J Czechoslovak Mathematical Journal %D 2016 %P 1007-1026 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0306-6/ %R 10.1007/s10587-016-0306-6 %G en %F 10_1007_s10587_016_0306_6
Du, Zhibin; da Fonseca, Carlos M. The real symmetric matrices of odd order with a P-set of maximum size. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1007-1026. doi: 10.1007/s10587-016-0306-6
[1] An{\dj}elić, M., Erić, A., Fonseca, C. M. da: Nonsingular acyclic matrices with full number of P-vertices. Linear Multilinear Algebra 61 (2013), 49-57; erratum ibid. 61 (2013), 1159-1160. | DOI | MR | Zbl
[2] An{\dj}elić, M., Fonseca, C. M. da, Mamede, R.: On the number of P-vertices of some graphs. Linear Algebra Appl. 434 (2011), 514-525. | DOI | MR | Zbl
[3] Cvetković, D., Rowlinson, P., Simić, S.: A study of eigenspaces of graphs. Linear Algebra Appl. 182 (1993), 45-66. | DOI | MR | Zbl
[4] Du, Z.: The real symmetric matrices with a P-set of maximum size and their associated graphs. J. South China Norm. Univ., Nat. Sci. Ed. 48 (2016), 119-122. | MR | Zbl
[5] Du, Z., Fonseca, C. M. da: The singular acyclic matrices of even order with a P-set of maximum size. (to appear) in Filomat.
[6] Du, Z., Fonseca, C. M. da: The acyclic matrices with a P-set of maximum size. Linear Algebra Appl. 468 (2015), 27-37. | MR | Zbl
[7] Du, Z., Fonseca, C. M. da: The singular acyclic matrices with the second largest number of P-vertices. Linear Multilinear Algebra 63 (2015), 2103-2120. | DOI | MR | Zbl
[8] Du, Z., Fonseca, C. M. da: Nonsingular acyclic matrices with an extremal number of P-vertices. Linear Algebra Appl. 442 (2014), 2-19. | MR | Zbl
[9] Du, Z., Fonseca, C. M. da: The singular acyclic matrices with maximal number of P-vertices. Linear Algebra Appl. 438 (2013), 2274-2279. | MR | Zbl
[10] Erić, A., Fonseca, C. M. da: The maximum number of P-vertices of some nonsingular double star matrices. Discrete Math. 313 (2013), 2192-2194. | DOI | MR | Zbl
[11] Fernandes, R., Cruz, H. F. da: Sets of Parter vertices which are Parter sets. Linear Algebra Appl. 448 (2014), 37-54. | MR | Zbl
[12] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | MR | Zbl
[13] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.: The Parter-Wiener theorem: Refinement and generalization. SIAM J. Matrix Anal. Appl. 25 (2003), 352-361. | DOI | MR
[14] Johnson, C. R., Sutton, B. D.: Hermitian matrices, eigenvalue multiplicities, and eigenvector components. SIAM J. Matrix Anal. Appl. 26 (2004), 390-399. | DOI | MR | Zbl
[15] Kim, I.-J., Shader, B. L.: Non-singular acyclic matrices. Linear Multilinear Algebra 57 (2009), 399-407. | DOI | MR | Zbl
[16] Kim, I.-J., Shader, B. L.: On Fiedler- and Parter-vertices of acyclic matrices. Linear Algebra Appl. 428 (2008), 2601-2613. | DOI | MR | Zbl
[17] Nelson, C., Shader, B.: All pairs suffice for a P-set. Linear Algebra Appl. 475 (2015), 114-118. | MR | Zbl
[18] Nelson, C., Shader, B.: Maximal P-sets of matrices whose graph is a tree. Linear Algebra Appl. 485 (2015), 485-502. | MR | Zbl
[19] Sciriha, I.: A characterization of singular graphs. Electron. J. Linear Algebra (electronic only) 16 (2007), 451-462. | MR | Zbl
[20] Sciriha, I.: On the construction of graphs of nullity one. Discrete Math. 181 (1998), 193-211. | DOI | MR | Zbl
Cité par Sources :