Rank decomposition in zero pattern matrix algebras
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 987-1005
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a block upper triangular matrix, a necessary and sufficient condition has been given to let it be the sum of block upper rectangular matrices satisfying certain rank constraints; see H. Bart, A. P. M. Wagelmans (2000). The proof involves elements from integer programming and employs Farkas' lemma. The algebra of block upper triangular matrices can be viewed as a matrix algebra determined by a pattern of zeros. The present note is concerned with the question whether the decomposition result referred to above can be extended to other zero pattern matrix algebras. It is shown that such a generalization does indeed hold for certain digraphs determining the pattern of zeros. The digraphs in question can be characterized in terms of forests, i.e., disjoint unions of rooted trees.
For a block upper triangular matrix, a necessary and sufficient condition has been given to let it be the sum of block upper rectangular matrices satisfying certain rank constraints; see H. Bart, A. P. M. Wagelmans (2000). The proof involves elements from integer programming and employs Farkas' lemma. The algebra of block upper triangular matrices can be viewed as a matrix algebra determined by a pattern of zeros. The present note is concerned with the question whether the decomposition result referred to above can be extended to other zero pattern matrix algebras. It is shown that such a generalization does indeed hold for certain digraphs determining the pattern of zeros. The digraphs in question can be characterized in terms of forests, i.e., disjoint unions of rooted trees.
DOI : 10.1007/s10587-016-0305-7
Classification : 05C05, 05C50, 15A21
Keywords: block upper triangularity; additive decomposition; rank constraints; zero pattern matrix algebra; preorder; partial order; Hasse diagram; rooted tree; out-tree; in-tree
@article{10_1007_s10587_016_0305_7,
     author = {Bart, Harm and Ehrhardt, Torsten and Silbermann, Bernd},
     title = {Rank decomposition in zero pattern matrix algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {987--1005},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0305-7},
     mrnumber = {3556880},
     zbl = {06644046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0305-7/}
}
TY  - JOUR
AU  - Bart, Harm
AU  - Ehrhardt, Torsten
AU  - Silbermann, Bernd
TI  - Rank decomposition in zero pattern matrix algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 987
EP  - 1005
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0305-7/
DO  - 10.1007/s10587-016-0305-7
LA  - en
ID  - 10_1007_s10587_016_0305_7
ER  - 
%0 Journal Article
%A Bart, Harm
%A Ehrhardt, Torsten
%A Silbermann, Bernd
%T Rank decomposition in zero pattern matrix algebras
%J Czechoslovak Mathematical Journal
%D 2016
%P 987-1005
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0305-7/
%R 10.1007/s10587-016-0305-7
%G en
%F 10_1007_s10587_016_0305_7
Bart, Harm; Ehrhardt, Torsten; Silbermann, Bernd. Rank decomposition in zero pattern matrix algebras. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 987-1005. doi: 10.1007/s10587-016-0305-7

[1] Bart, H., Ehrhardt, T., Silbermann, B.: Echelon type canonical forms in upper triangular matrix algebras. (to appear) in Oper. Theory, Adv. Appl.

[2] Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in zero pattern matrix algebras. Linear Algebra Appl. 498 (2016), 262-316. | MR | Zbl

[3] Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in matrix algebras. Operator Theory and Analysis. The M. A. Kaashoek Anniversary Volume (Bart, H. et al. eds.), Oper. Theory, Adv. Appl. 122 (2001), 139-168. | MR | Zbl

[4] Bart, H., Ehrhardt, T., Silbermann, B.: Logarithmic residues in Banach algebras. Integral Equations Oper. Theory 19 (1994), 135-152. | DOI | MR | Zbl

[5] Bart, H., Wagelmans, A. P. M.: An integer programming problem and rank decomposition of block upper triangular matrices. Linear Algebra Appl. 305 (2000), 107-129. | MR | Zbl

[6] Birkhoff, G.: Lattice Theory. Colloquium Publications Vol. 25 American Mathematical Society, Providence (1967). | MR | Zbl

[7] Davis, R. L.: Algebras defined by patterns of zeros. J. Comb. Theory 9 (1970), 257-260. | DOI | MR | Zbl

[8] Fang, S.-C., Puthenpura, S.: Linear Optimization and Extensions: Theory and Algorithms. Prentice-Hall, Englewood Cliffs (1993).

[9] Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics, Reading, Mass. Addison-Wesley Publishing Company (1969). | MR | Zbl

[10] Laffey, T. J.: A structure theorem for some matrix algebras. Linear Algebra Appl. 162-164 (1992), 205-215. | MR | Zbl

[11] Papadimitriou, C. H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982). | MR | Zbl

[12] Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics John Wiley & Sons, Chichester (1986). | MR | Zbl

[13] Szpilrajn, E.: Sur l'extension de l'ordre partiel. Fundamenta Mathematicae 16 (1930), 386-389 French available at\ http://matwbn.icm.edu.pl/ksiazki/fm/fm16/fm16125.pdf\kern-3sp | DOI

Cité par Sources :