Keywords: completely positive matrix; cp-rank; factorization; discrete maximum principle
@article{10_1007_s10587_016_0303_9,
author = {Brandts, Jan and K\v{r}{\'\i}\v{z}ek, Michal},
title = {Factorization of {CP-rank-}$3$ completely positive matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {955--970},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0303-9},
mrnumber = {3556878},
zbl = {06644044},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0303-9/}
}
TY - JOUR AU - Brandts, Jan AU - Křížek, Michal TI - Factorization of CP-rank-$3$ completely positive matrices JO - Czechoslovak Mathematical Journal PY - 2016 SP - 955 EP - 970 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0303-9/ DO - 10.1007/s10587-016-0303-9 LA - en ID - 10_1007_s10587_016_0303_9 ER -
%0 Journal Article %A Brandts, Jan %A Křížek, Michal %T Factorization of CP-rank-$3$ completely positive matrices %J Czechoslovak Mathematical Journal %D 2016 %P 955-970 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0303-9/ %R 10.1007/s10587-016-0303-9 %G en %F 10_1007_s10587_016_0303_9
Brandts, Jan; Křížek, Michal. Factorization of CP-rank-$3$ completely positive matrices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 955-970. doi: 10.1007/s10587-016-0303-9
[1] Barioli, F., Berman, A.: The maximal cp-rank of rank $k$ completely positive matrices. Linear Algebra Appl. 363 (2003), 17-33. | MR | Zbl
[2] Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, River Edge (2003). | MR | Zbl
[3] Croft, H. T., Falconer, K. J., Guy, R. K.: Unsolved Problems in Geometry. Problem Books in Mathematics 2 Springer, New York (1991). | DOI | MR | Zbl
[4] Berg, M. de, Kreveld, M. van, Overmars, M., Schwarzkopf, O.: Computational Geometry. Algorithms and Applications. Springer, Berlin (2000). | DOI | MR
[5] Post, K. A.: Triangle in a triangle: on a problem of Steinhaus. Geom. Dedicata (1993), 45 115-120. | DOI | MR | Zbl
[6] Shaked-Monderer, N.: A note on upper bounds on the cp-rank. Linear Algebra Appl. 431 2407-2413 (2009). | MR | Zbl
[7] Steinhaus, H.: One Hundred Problems in Elementary Mathematics. Popular Lectures in Mathematics 7 Pergamon Press, Oxford (1963). | MR | Zbl
[8] Sullivan, J. M.: Polygon in a triangle: Generalizing theorem by Post. Preprint available at http://torus.math.uiuc.edu/jms/Papers/post.pdf (1996).
[9] Vejchodský, T., Šolín, P.: Discrete maximum principle for higher-order finite elements in 1D. Math. Comput. 76 1833-1846 (2007). | DOI | MR | Zbl
Cité par Sources :