Factorization of CP-rank-$3$ completely positive matrices
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 955-970
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A symmetric positive semi-definite matrix $A$ is called completely positive if there exists a matrix $B$ with nonnegative entries such that $A=BB^\top $. If $B$ is such a matrix with a minimal number $p$ of columns, then $p$ is called the cp-rank of $A$. In this paper we develop a finite and exact algorithm to factorize any matrix $A$ of cp-rank $3$. Failure of this algorithm implies that $A$ does not have cp-rank $3$. Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that vanish at the boundary of an interval and are orthonormal with respect to a certain inner product.
A symmetric positive semi-definite matrix $A$ is called completely positive if there exists a matrix $B$ with nonnegative entries such that $A=BB^\top $. If $B$ is such a matrix with a minimal number $p$ of columns, then $p$ is called the cp-rank of $A$. In this paper we develop a finite and exact algorithm to factorize any matrix $A$ of cp-rank $3$. Failure of this algorithm implies that $A$ does not have cp-rank $3$. Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that vanish at the boundary of an interval and are orthonormal with respect to a certain inner product.
DOI : 10.1007/s10587-016-0303-9
Classification : 15B48, 65N30
Keywords: completely positive matrix; cp-rank; factorization; discrete maximum principle
@article{10_1007_s10587_016_0303_9,
     author = {Brandts, Jan and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {Factorization of {CP-rank-}$3$ completely positive matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {955--970},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0303-9},
     mrnumber = {3556878},
     zbl = {06644044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0303-9/}
}
TY  - JOUR
AU  - Brandts, Jan
AU  - Křížek, Michal
TI  - Factorization of CP-rank-$3$ completely positive matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 955
EP  - 970
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0303-9/
DO  - 10.1007/s10587-016-0303-9
LA  - en
ID  - 10_1007_s10587_016_0303_9
ER  - 
%0 Journal Article
%A Brandts, Jan
%A Křížek, Michal
%T Factorization of CP-rank-$3$ completely positive matrices
%J Czechoslovak Mathematical Journal
%D 2016
%P 955-970
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0303-9/
%R 10.1007/s10587-016-0303-9
%G en
%F 10_1007_s10587_016_0303_9
Brandts, Jan; Křížek, Michal. Factorization of CP-rank-$3$ completely positive matrices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 955-970. doi: 10.1007/s10587-016-0303-9

[1] Barioli, F., Berman, A.: The maximal cp-rank of rank $k$ completely positive matrices. Linear Algebra Appl. 363 (2003), 17-33. | MR | Zbl

[2] Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, River Edge (2003). | MR | Zbl

[3] Croft, H. T., Falconer, K. J., Guy, R. K.: Unsolved Problems in Geometry. Problem Books in Mathematics 2 Springer, New York (1991). | DOI | MR | Zbl

[4] Berg, M. de, Kreveld, M. van, Overmars, M., Schwarzkopf, O.: Computational Geometry. Algorithms and Applications. Springer, Berlin (2000). | DOI | MR

[5] Post, K. A.: Triangle in a triangle: on a problem of Steinhaus. Geom. Dedicata (1993), 45 115-120. | DOI | MR | Zbl

[6] Shaked-Monderer, N.: A note on upper bounds on the cp-rank. Linear Algebra Appl. 431 2407-2413 (2009). | MR | Zbl

[7] Steinhaus, H.: One Hundred Problems in Elementary Mathematics. Popular Lectures in Mathematics 7 Pergamon Press, Oxford (1963). | MR | Zbl

[8] Sullivan, J. M.: Polygon in a triangle: Generalizing theorem by Post. Preprint available at http://torus.math.uiuc.edu/jms/Papers/post.pdf (1996).

[9] Vejchodský, T., Šolín, P.: Discrete maximum principle for higher-order finite elements in 1D. Math. Comput. 76 1833-1846 (2007). | DOI | MR | Zbl

Cité par Sources :