Keywords: eigenvalue; discrepancy; quasirandomness; Cayley graph
@article{10_1007_s10587_016_0302_x,
author = {Kohayakawa, Yoshiharu and R\"odl, Vojt\v{e}ch and Schacht, Mathias},
title = {Discrepancy and eigenvalues of {Cayley} graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {941--954},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0302-x},
mrnumber = {3556877},
zbl = {06644043},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0302-x/}
}
TY - JOUR AU - Kohayakawa, Yoshiharu AU - Rödl, Vojtěch AU - Schacht, Mathias TI - Discrepancy and eigenvalues of Cayley graphs JO - Czechoslovak Mathematical Journal PY - 2016 SP - 941 EP - 954 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0302-x/ DO - 10.1007/s10587-016-0302-x LA - en ID - 10_1007_s10587_016_0302_x ER -
%0 Journal Article %A Kohayakawa, Yoshiharu %A Rödl, Vojtěch %A Schacht, Mathias %T Discrepancy and eigenvalues of Cayley graphs %J Czechoslovak Mathematical Journal %D 2016 %P 941-954 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0302-x/ %R 10.1007/s10587-016-0302-x %G en %F 10_1007_s10587_016_0302_x
Kohayakawa, Yoshiharu; Rödl, Vojtěch; Schacht, Mathias. Discrepancy and eigenvalues of Cayley graphs. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 941-954. doi: 10.1007/s10587-016-0302-x
[1] Alon, N.: Eigenvalues and expanders. Combinatorica 6 (1986), 83-96. | DOI | MR | Zbl
[2] Alon, N., Chung, F. R. K.: Explicit construction of linear sized tolerant networks. Discrete Math. 72 (1988), 15-19. | DOI | MR | Zbl
[3] Alon, N., Coja-Oghlan, A., Hàn, H., Kang, M., Rödl, V., Schacht, M.: Quasi-randomness and algorithmic regularity for graphs with general degree distributions. SIAM J. Comput. 39 (2010), 2336-2362. | DOI | MR | Zbl
[4] Alon, N., Milman, V. D.: $\lambda_1$, isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38 (1985), 73-88. | DOI | MR
[5] Alon, N., Spencer, J. H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization John Wiley & Sons, Hoboken (2008). | MR | Zbl
[6] Babai, L.: Spectra of Cayley graphs. J. Comb. Theory, Ser. B 27 (1979), 180-189. | DOI | MR | Zbl
[7] Bilu, Y., Linial, N.: Lifts, discrepancy and nearly optimal spectral gap. Combinatorica 26 (2006), 495-519. | DOI | MR | Zbl
[8] Chung, F., Graham, R.: Sparse quasi-random graphs. Combinatorica 22 (2002), 217-244. | DOI | MR | Zbl
[9] Chung, F. R. K., Graham, R. L., Wilson, R. M.: Quasi-random graphs. Combinatorica 9 (1989), 345-362. | DOI | MR | Zbl
[10] Conlon, D., Fox, J., Zhao, Y.: Extremal results in sparse pseudorandom graphs. Adv. Math. 256 (2014), 206-290. | DOI | MR | Zbl
[11] Conlon, D., Zhao, Y.: Quasirandom Cayley graphs. Available at ArXiv: 1603.03025 [math.CO].
[12] Donath, W. E., Hoffman, A. J.: Lower bounds for the partitioning of graphs. IBM J. Res. Dev. 17 (1973), 420-425. | DOI | MR | Zbl
[13] Donath, W. E., Hoffman, A. J.: Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. (1972), IBM Techn. Disclosure Bull. 15 938-944.
[14] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619-633. | DOI | MR | Zbl
[15] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | Zbl
[16] Frankl, P., Rödl, V., Wilson, R. M.: The number of submatrices of a given type in a Hadamard matrix and related results. J. Comb. Theory, Ser. B 44 (1988), 317-328. | DOI | MR | Zbl
[17] Gowers, W. T.: Personal communication.
[18] Hall, K. M.: R-dimensional quadratic placement algorithm. (1970), Management Science Series A (Theory) 17 219-229. | Zbl
[19] Kohayakawa, Y., Rödl, V.: Regular pairs in sparse random graphs I. Random Struct. Algorithms 22 (2003), 359-434. | MR | Zbl
[20] Kohayakawa, Y., Rödl, V., Sissokho, P.: Embedding graphs with bounded degree in sparse pseudorandom graphs. Isr. J. Math. 139 (2004), 93-137. | DOI | MR | Zbl
[21] Krivelevich, M., Sudakov, B.: Pseudo-random graphs. E. Györi More Sets, Graphs and Numbers Bolyai Society Mathematical Studies 15 Springer, Berlin (2006), 199-262. | DOI | MR | Zbl
[22] Lovász, L.: Combinatorial Problems and Exercises. AMS Chelsea Publishing, Providence (2007). | MR | Zbl
[23] Lov{á}sz, L.: Spectra of graphs with transitive groups. Period. Math. Hung. 6 (1975), 191-195. | DOI | MR | Zbl
[24] Rödl, V.: On universality of graphs with uniformly distributed edges. Discrete Math. 59 (1986), 125-134. | DOI | MR | Zbl
[25] Serre, J.-P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics 42 Springer, New York (1977). | DOI | MR | Zbl
[26] Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing Markov chains. Inf. Comput. 82 (1989), 93-133. | DOI | MR | Zbl
[27] Spielman, D.: Spectral graph theory. Combinatorial Scientific Computing Chapman & Hall/CRC Comput. Sci. Ser. CRC Press, Boca Raton, FL (2012), 495-524. | DOI | MR
[28] Spielman, D. A., Teng, S.-H: Spectral partitioning works: planar graphs and finite element meshes. Linear Algebra Appl. 421 (2007), 284-305. | MR | Zbl
[29] Tanner, R. M.: Explicit concentrators from generalized $N$-gons. SIAM J. Algebraic Discrete Methods 5 (1984), 287-293. | DOI | MR | Zbl
[30] Thomason, A.: Pseudo-random graphs. Random graphs '85 Ann. Discrete Math. 33 North-Holland, Amsterdam (1987), 307-331. | MR | Zbl
[31] Thomason, A.: Random graphs, strongly regular graphs and pseudo-random graphs. Surveys in Combinatorics 1987 London Math. Soc. Lecture Note Ser. 123 Cambridge Univ. Press, Cambridge (1987), 173-195. | MR | Zbl
Cité par Sources :