Keywords: Hamiltonian cycle; Hamiltonian path; minimum degree; spectral radius
@article{10_1007_s10587_016_0301_y,
author = {Nikiforov, Vladimir},
title = {Spectral radius and {Hamiltonicity} of graphs with large minimum degree},
journal = {Czechoslovak Mathematical Journal},
pages = {925--940},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0301-y},
mrnumber = {3556876},
zbl = {06644042},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0301-y/}
}
TY - JOUR AU - Nikiforov, Vladimir TI - Spectral radius and Hamiltonicity of graphs with large minimum degree JO - Czechoslovak Mathematical Journal PY - 2016 SP - 925 EP - 940 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0301-y/ DO - 10.1007/s10587-016-0301-y LA - en ID - 10_1007_s10587_016_0301_y ER -
%0 Journal Article %A Nikiforov, Vladimir %T Spectral radius and Hamiltonicity of graphs with large minimum degree %J Czechoslovak Mathematical Journal %D 2016 %P 925-940 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0301-y/ %R 10.1007/s10587-016-0301-y %G en %F 10_1007_s10587_016_0301_y
Nikiforov, Vladimir. Spectral radius and Hamiltonicity of graphs with large minimum degree. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 925-940. doi: 10.1007/s10587-016-0301-y
[1] Benediktovich, V. I.: Spectral condition for Hamiltonicity of a graph. Linear Algebra Appl. 494 (2016), 70-79. | MR | Zbl
[2] Bollob{á}s, B.: Modern Graph Theory. Graduate Texts in Mathematics 184 Springer, New York (1998). | MR | Zbl
[3] Bondy, J. A., Chvátal, V.: A method in graph theory. Discrete Math. 15 (1976), 111-135. | DOI | MR | Zbl
[4] Butler, S., Chung, F.: Small spectral gap in the combinatorial Laplacian implies Hamiltonian. Ann. Comb. 13 (2010), 403-412. | DOI | MR | Zbl
[5] Chv{á}tal, V.: On Hamilton's ideals. J. Comb. Theory, Ser. B 12 (1972), 163-168. | DOI | Zbl
[6] Dirac, G. A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc., III. Ser. 2 (1952), 69-81. | DOI | MR | Zbl
[7] Erd{ő}s, P.: Remarks on a paper of Pósa. Publ. Math. Inst. Hung. Acad. Sci., Ser. A 7 (1962), 227-229. | MR | Zbl
[8] Fan, Y.-Z., Yu, G.-D.: Spectral condition for a graph to be Hamiltonian with respect to normalized Laplacian. Preprint available at Arxiv 1207.6824v1 (2012), 12 pages.
[9] Fiedler, M., Nikiforov, V.: Spectral radius and Hamiltonicity of graphs. Linear Algebra Appl. 432 (2010), 2170-2173. | DOI | MR | Zbl
[10] Hong, Y., Shu, J.-L., Fang, K.: A sharp upper bound of the spectral radius of graphs. J. Comb. Theory, Ser. B 81 (2001), 177-183. | DOI | MR | Zbl
[11] Krivelevich, M., Sudakov, B.: Sparse pseudo-random graphs are Hamiltonian. J. Graph Theory 42 (2003), 17-33. | DOI | MR | Zbl
[12] Li, R.: Laplacian spectral radius and some Hamiltonian properties of graphs. Appl. Math. E-Notes (electronic only) 14 216-220 (2014), corrigendum, ibid. 15 216-217 (2015). | MR | Zbl
[13] Li, B., Ning, B.: Spectral analogues of Erdős' and Moon-Moser's theorems on Hamilton cycles. Linear Multilinear Algebra DOI:10.1080/03081087.2016.1151854. | DOI | MR
[14] Liu, R., Shiu, W. C., Xue, J.: Sufficient spectral conditions on Hamiltonian and traceable graphs. Linear Algebra Appl. 467 (2015), 254-266. | MR | Zbl
[15] Lu, M., Liu, H., Tian, F.: Spectral radius and Hamiltonian graphs. Linear Algebra Appl. 437 (2012), 1670-1674. | MR | Zbl
[16] Nikiforov, V.: Some inequalities for the largest eigenvalue of a graph. Comb. Probab. Comput. 11 (2002), 179-189. | DOI | MR | Zbl
[17] Ning, B., Ge, J.: Spectral radius and Hamiltonian properties of graphs. Linear Multilinear Algebra 63 (2015), 1520-1530. | DOI | MR | Zbl
[18] Ore, O.: Hamilton connected graphs. J. Math. Pures Appl., IX. Sér. 42 (1963), 21-27. | MR | Zbl
[19] Ore, O.: Arc coverings of graphs. Ann. Mat. Pura Appl., IV. Ser. 55 (1961), 315-321. | DOI | MR | Zbl
[20] Zhou, B.: Signless Laplacian spectral radius and Hamiltonicity. Linear Algebra Appl. 432 (2010), 566-570. | MR | Zbl
Cité par Sources :