Keywords: sign pattern (matrix); nonnegative sign pattern; minimum rank; convex polytope; rational minimum rank; rational realization; integer matrix; condensed sign pattern; point-hyperplane configuration
@article{10_1007_s10587_016_0299_1,
author = {Fang, Wei and Gao, Wei and Gao, Yubin and Gong, Fei and Jing, Guangming and Li, Zhongshan and Shao, Yanling and Zhang, Lihua},
title = {Rational realization of the minimum ranks of nonnegative sign pattern matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {895--911},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0299-1},
mrnumber = {3556874},
zbl = {06644040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0299-1/}
}
TY - JOUR AU - Fang, Wei AU - Gao, Wei AU - Gao, Yubin AU - Gong, Fei AU - Jing, Guangming AU - Li, Zhongshan AU - Shao, Yanling AU - Zhang, Lihua TI - Rational realization of the minimum ranks of nonnegative sign pattern matrices JO - Czechoslovak Mathematical Journal PY - 2016 SP - 895 EP - 911 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0299-1/ DO - 10.1007/s10587-016-0299-1 LA - en ID - 10_1007_s10587_016_0299_1 ER -
%0 Journal Article %A Fang, Wei %A Gao, Wei %A Gao, Yubin %A Gong, Fei %A Jing, Guangming %A Li, Zhongshan %A Shao, Yanling %A Zhang, Lihua %T Rational realization of the minimum ranks of nonnegative sign pattern matrices %J Czechoslovak Mathematical Journal %D 2016 %P 895-911 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0299-1/ %R 10.1007/s10587-016-0299-1 %G en %F 10_1007_s10587_016_0299_1
Fang, Wei; Gao, Wei; Gao, Yubin; Gong, Fei; Jing, Guangming; Li, Zhongshan; Shao, Yanling; Zhang, Lihua. Rational realization of the minimum ranks of nonnegative sign pattern matrices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 895-911. doi: 10.1007/s10587-016-0299-1
[1] Alon, N., Frankl, P., Rödl, V.: Geometric realization of set systems and probabilistic communication complexity. Proc. 26th Annual Symp. on Foundations of Computer Science IEEE Computer Society, Portland (1985),272-280.
[2] Arav, M., Hall, F., Koyuncu, S., Li, Z., Rao, B.: Rational realizations of the minimum rank of a sign pattern matrix. Linear Algebra Appl. 409 (2005), 111-125. | MR
[3] Arav, M., Hall, F., Li, Z., Merid, A., Gao, Y.: Sign patterns that require almost unique rank. Linear Algebra Appl. 430 (2009), 7-16. | MR | Zbl
[4] Arav, M., Hall, F., Li, Z., Rao, B.: Rational solutions of certain matrix equations. Linear Algebra Appl. 430 (2009), 660-663. | MR | Zbl
[5] Arav, M., Hall, F., Li, Z., Holst, H. van der, Sinkovic, J. H., Zhang, L.: Minimum ranks of sign patterns via sign vectors and duality. Electron. J. Linear Algebra 30 (2015), 360-371. | DOI | MR
[6] Berman, A., Friedland, S., Hogben, L., Rothblum, U. G., Shader, B.: Minimum rank of matrices described by a graph or pattern over the rational, real and complex numbers. Electron. J. Comb. 15 (2008), 1-19. | MR | Zbl
[7] Brualdi, R., Fallat, S., Hogben, L., Shader, B., Driessche, P. van den: Final Report: Workshop on Theory and Applications of Matrices described by Patterns. Banff International Research Station (2010),20 pages.
[8] Brualdi, R. A., Shader, B. L.: Matrices of Sign-Solvable Linear Systems. Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). | MR | Zbl
[9] Chen, G., Hall, F. J., Li, Z., Wei, B.: On ranks of matrices associated with trees. Graphs Comb. 19 (2003), 323-334. | DOI | MR | Zbl
[10] Delsarte, P., Kamp, Y.: Low rank matrices with a given sign pattern. SIAM J. Discrete Math. 2 (1989), 51-63. | DOI | MR | Zbl
[11] Fang, W., Gao, W., Gao, Y., Gong, F., Jing, G., Li, Z., Shao, Y., Zhang, L.: Minimum ranks of sign patterns and zero-nonzero patterns and point-hyperplane configurations. Submitted to Linear Algebra Appl.
[12] Fiedler, M., Gao, W., Hall, F. J., Jing, G., Li, Z., Stroev, M.: Ranks of dense alternating sign matrices and their sign patterns. Linear Algebra Appl. 471 (2015), 109-121. | MR | Zbl
[13] Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity. J. Comput. Syst. Sci. 65 (2002), 612-625. | DOI | MR | Zbl
[14] Forster, J., Schmitt, N., Simon, H. U., Suttorp, T.: Estimating the optimal margins of embeddings in Euclidean half spaces. Mach. Learn. 51 (2003), 263-281. | DOI | MR | Zbl
[15] Friesen, M., Hamed, A., Lee, T., Theis, D. O.: Fooling-sets and rank. Eur. J. Comb. (2015), 143-153. | MR | Zbl
[16] Graham, R. L., Grötschel, M., Lovász, L., eds.: Handbook of Combinatorics. MIT Press, Cambridge (1995).
[17] Hall, F. J., Li, Z.: Sign Pattern Matrices. Handbook of Linear Algebra L. Hogben Discrete Mathematics and Its Applications Chapman & Hall/CRC, Boca Raton (2014).
[18] Hershkowitz, D., Schneider, H.: Ranks of zero patterns and sign patterns. Linear Multilinear Algebra 34 (1993), 3-19. | DOI | MR | Zbl
[19] Johnson, C. R.: Some outstanding problems in the theory of matrices. Linear Multilinear Algebra 12 (1982), 99-108. | DOI | MR | Zbl
[20] Johnson, C. R., Zhang, Y.: On the possible ranks among matrices with a given pattern. Discrete Math. Algorithms Appl. 2 (2010), 363-377. | DOI | MR | Zbl
[21] Kopparty, S., Rao, K. P. S. B.: The minimum rank problem: a counterexample. Linear Algebra Appl. 428 (2008), 1761-1765. | MR | Zbl
[22] Li, Z., Gao, Y., Arav, M., Gong, F., Gao, W., Hall, F. J., Holst, H. van der: Sign patterns with minimum rank 2 and upper bounds on minimum ranks. Linear Multilinear Algebra 61 (2013), 895-908. | DOI | MR
[23] Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics 212 Springer, New York (2002). | MR | Zbl
[24] Paturi, R., Simon, J.: Probabilistic communication complexity. J. Comput. Syst. Sci. 33 (1986), 106-123. | DOI | MR | Zbl
[25] Razborov, A. A., Sherstov, A. A.: The sign rank of AC$^0$. SIAM J. Comput. 39 (2010), 1833-1855. | DOI | MR | Zbl
[26] Mor, A. Ribó, Rote, G., Schulz, A.: Small grid embeddings of 3-polytopes. Discrete Comput. Geom. 45 (2011), 65-87. | DOI | MR
[27] Shitov, Y.: Sign patterns of rational matrices with large rank. Eur. J. Comb. 42 (2014), 107-111. | DOI | MR | Zbl
[28] Ziegler, G. M.: Lectures on Polytopes. Graduate Texts in Mathematics 152 Springer, Berlin (1995). | MR | Zbl
Cité par Sources :