Keywords: dominant eigenpair; cone of matrices; spectral method; community detection
@article{10_1007_s10587_016_0298_2,
author = {Fasino, Dario and Tudisco, Francesco},
title = {Localization of dominant eigenpairs and planted communities by means of {Frobenius} inner products},
journal = {Czechoslovak Mathematical Journal},
pages = {881--893},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0298-2},
mrnumber = {3556873},
zbl = {06644039},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0298-2/}
}
TY - JOUR AU - Fasino, Dario AU - Tudisco, Francesco TI - Localization of dominant eigenpairs and planted communities by means of Frobenius inner products JO - Czechoslovak Mathematical Journal PY - 2016 SP - 881 EP - 893 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0298-2/ DO - 10.1007/s10587-016-0298-2 LA - en ID - 10_1007_s10587_016_0298_2 ER -
%0 Journal Article %A Fasino, Dario %A Tudisco, Francesco %T Localization of dominant eigenpairs and planted communities by means of Frobenius inner products %J Czechoslovak Mathematical Journal %D 2016 %P 881-893 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0298-2/ %R 10.1007/s10587-016-0298-2 %G en %F 10_1007_s10587_016_0298_2
Fasino, Dario; Tudisco, Francesco. Localization of dominant eigenpairs and planted communities by means of Frobenius inner products. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 881-893. doi: 10.1007/s10587-016-0298-2
[1] Fasino, D., Tudisco, F.: Generalized modularity matrices. Linear Algebra Appl. 502 (2016), 327-345. | DOI | MR | Zbl
[2] Fiedler, M.: Special Matrices and Their Applications in Numerical Mathematics. Martinus Nijhoff Publishers, Dordrecht, 1986, SNTL, Praha (1986). | MR | Zbl
[3] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619-633. | DOI | MR | Zbl
[4] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | Zbl
[5] Nadakuditi, R. R., Newman, M. E. J.: Graph spectra and the detectability of community structure in networks. Phys. Rev. Lett. 108 188701, 5 pages (2012). | DOI
[6] Newman, M. E. J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74 (2006), 036104, 19 pages. | MR
[7] Newman, M. E. J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69 026113, 15 pages (2004). | DOI | MR
[8] Nikiforov, V.: The influence of Miroslav Fiedler on spectral graph theory. Linear Algebra Appl. 439 (2013), 818-821. | MR | Zbl
[9] Rohe, K., Chatterjee, S., Yu, B.: Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Stat. 39 (2011), 1878-1915. | DOI | MR | Zbl
[10] Tarazaga, P., Raydan, M., Hurman, A.: Perron-Frobenius theorem for matrices with some negative entries. Linear Algebra Appl. 328 (2001),57-68. | MR | Zbl
[11] Tarazaga, P.: Eigenvalue estimates for symmetric matrices. Linear Algebra Appl. 135 (1990), 171-179. | DOI | MR | Zbl
Cité par Sources :