Keywords: Moore-Penrose inverse; condition number; ill-conditioned matrix
@article{10_1007_s10587_016_0297_3,
author = {Chen, Yunkun and Shi, Xinghua and Wei, Yimin},
title = {Convergence of {Rump's} method for computing the {Moore-Penrose} inverse},
journal = {Czechoslovak Mathematical Journal},
pages = {859--879},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0297-3},
mrnumber = {3556872},
zbl = {06644038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0297-3/}
}
TY - JOUR AU - Chen, Yunkun AU - Shi, Xinghua AU - Wei, Yimin TI - Convergence of Rump's method for computing the Moore-Penrose inverse JO - Czechoslovak Mathematical Journal PY - 2016 SP - 859 EP - 879 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0297-3/ DO - 10.1007/s10587-016-0297-3 LA - en ID - 10_1007_s10587_016_0297_3 ER -
%0 Journal Article %A Chen, Yunkun %A Shi, Xinghua %A Wei, Yimin %T Convergence of Rump's method for computing the Moore-Penrose inverse %J Czechoslovak Mathematical Journal %D 2016 %P 859-879 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0297-3/ %R 10.1007/s10587-016-0297-3 %G en %F 10_1007_s10587_016_0297_3
Chen, Yunkun; Shi, Xinghua; Wei, Yimin. Convergence of Rump's method for computing the Moore-Penrose inverse. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 859-879. doi: 10.1007/s10587-016-0297-3
[1] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses. Theory and Applications. Springer, New York (2003). | MR | Zbl
[2] Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM) Philadelphia (1996). | MR | Zbl
[3] Campbell, S. L., Meyer, C. D.: Generalized Inverses of Linear Transformations. Dover Publications, New York (1991). | MR | Zbl
[4] Castro-González, N., Ceballos, J., Dopico, F. M., Molera, J. M.: Accurate solution of structured least squares problems via rank-revealing decompositions. SIAM J. Matrix Anal. Appl. 34 (2013), 1112-1128. | DOI | MR | Zbl
[5] Chen, L., Krishnamurthy, E. V., Madeod, I.: Generalised matrix inversion and rank computation by successive matrix powering. Parallel Comput. 20 (1994), 297-311. | DOI | MR
[6] Courrieu, P.: Fast computation of Moore-Penrose inverse matrices. Neural Information Processing 8 (2005), 25-29.
[7] Cucker, F., Diao, H., Wei, Y.: On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems. Math. Comput. 76 (2007), 947-963. | DOI | MR | Zbl
[8] Cucker, F., Diao, H., Wei, Y.: Smoothed analysis of some condition numbers. Numer. Linear Algebra Appl. 13 (2006), 71-84. | DOI | MR | Zbl
[9] Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299 (1999), 21-80. | MR | Zbl
[10] Demmel, J. W., Hida, Y., Li, X. S., Riedy, E. J.: Extra-precise iterative refinement for overdetermined least squares problems. ACM Trans. Math. Software 35 (2009), Art. 28, 32 pages. | DOI | MR
[11] Demmel, J., Higham, N. J.: Improved error bounds for underdetermined system solvers. SIAM J. Matrix Anal. Appl. 14 (1993), 1-14. | DOI | MR
[12] Diao, H., Wei, Y.: On Frobenius normwise condition numbers for Moore-Penrose inverse and linear least-squares problems. Numer. Linear Algebra Appl. 14 (2007), 603-610. | DOI | MR | Zbl
[13] Diao, H., Wei, Y., Qiao, S.: Structured condition numbers of structured Tikhonov regularization problem and their estimations. J. Comput. Appl. Math. 308 (2016), 276-300. | DOI | MR | Zbl
[14] Dopico, F. M., Molera, J. M.: Accurate solution of structured linear systems via rank-revealing decompositions. IMA J. Numer. Anal. 32 (2012), 1096-1116. | DOI | MR | Zbl
[15] Fiedler, M.: Moore-Penrose biorthogonal systems in Euclidean spaces. Linear Algebra Appl. 362 (2003), 137-143. | DOI | MR | Zbl
[16] Fiedler, M., Markham, T. L.: A characterization of the Moore-Penrose inverse. Linear Algebra Appl. 179 (1993), 129-133. | MR | Zbl
[17] Golub, G. H., Loan, C. F. Van: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences Johns Hopkins University Press, Baltimore (2013). | MR
[18] Gulliksson, M., Wedin, P. Å., Wei, Y.: Perturbation identities for regularized Tikhonov inverses and weighted pseudoinverses. BIT 40 (2000), 513-523. | DOI | MR
[19] Jones, J., Karampetakis, N. P., Pugh, A. C.: The computation and application of the generalized inverse via Maple. J. Symb. Comput. 25 (1998), 99-124. | DOI | MR | Zbl
[20] Katsikis, V. N., Pappas, D.: Fast computing of the Moore-Penrose inverse matrix. Electron. J. Linear Algebra (electronic only) 17 (2008), 637-650. | MR | Zbl
[21] Li, Z.-C., Huang, H.-T., Wei, Y., Cheng, A. H.-D.: Effective Condition Number for Numerical Partial Differential Equations. Alpha Science International, Oxford (2014). | MR
[22] Li, Z., Xu, Q., Wei, Y.: A note on stable perturbations of Moore-Penrose inverses. Numer. Linear Algebra Appl. 20 (2013), 18-26. | DOI | MR | Zbl
[23] Ogita, T., Rump, S. M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26 (2005), 1955-1988. | DOI | MR | Zbl
[24] Ohta, T., Ogita, T., Rump, S. M., Oishi, S.: Numerical verification method for arbitrarily ill-conditioned linear systems. Transactions of the Japan Society for Industrial and Applied Mathematics 15 (2005), 269-287.
[25] Oishi, S., Rump, S. M.: Fast verification of solutions of matrix equations. Numer. Math. 90 (2002), 755-773. | DOI | MR | Zbl
[26] Oishi, S., Tanabe, K., Ogita, T., Rump, S. M.: Convergence of Rump's method for inverting arbitrarily ill-conditioned matrices. J. Comput. Appl. Math. 205 (2007), 533-544. | DOI | MR | Zbl
[27] Rao, C. R., Mitra, S. K.: Generalized Inverses of Matrices and Its Applications. Wiley Series in Probability and Mathematical Statistics Wiley & Sons, New York (1971). | MR
[28] Rump, S. M.: Verified bounds for least squares problems and underdetermined linear systems. SIAM J. Matrix Anal. Appl. 33 (2012), 130-148. | DOI | MR | Zbl
[29] Rump, S. M.: Inversion of extremely ill-conditioned matrices in floating-point. Japan J. Ind. Appl. Math. 26 (2009), 249-277. | DOI | MR | Zbl
[30] Rump, S. M.: INTLAB---Interval Laboratory, the Matlab toolbox for verified computations, Version 5.3. Institute for Reliable Computing, Hamburg (2006).
[31] Rump, S. M.: Ill-conditioned matrices are componentwise near to singularity. SIAM Rev. 41 (1999), 102-112. | DOI | MR | Zbl
[32] Rump, S. M.: Ill-conditionedness need not be componentwise near to ill-posedness for least squares problems. BIT 39 (1999), 143-151. | DOI | MR | Zbl
[33] Rump, S. M.: A class of arbitrarily ill-conditioned floating-point matrices. SIAM J. Matrix Anal. Appl. 12 (1991), 645-653. | DOI | MR | Zbl
[34] Rump, S. M.: Approximate Inverses of Almost Singular Matrices Still Contain Useful Information, Technical Report 90.1. Faculty for Information and Communications Sciences, TU Hamburg Harburg (1990).
[35] Smoktunowicz, A., Barlow, J., Langou, J.: A note on the error analysis of classical Gram-Schmidt. Numer. Math. 105 (2006), 299-313. | DOI | MR | Zbl
[36] Smoktunowicz, A., Wróbel, I.: Numerical aspects of computing the Moore-Penrose inverse of full column rank matrices. BIT 52 (2012), 503-524. | DOI | MR | Zbl
[37] Stewart, G. W.: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19 (1977), 634-662. | DOI | MR
[38] Wang, G., Wei, Y., Qiao, S.: Generalized Inverses: Theory and Computations. Science Press, Beijing (2004). | MR
[39] Wedin, P. Å.: Perturbation theory for pseudo-inverses. BIT, Nord. Tidskr. Inf.-behandl. 13 (1973), 217-232. | MR | Zbl
[40] Wei, Y.: Generalized inverses of matrices, Chapter 27. Handbook of Linear Algebra L. Hogben Chapman & Hall/CRC Press, Boca Raton (2014), 27-1-27-15. | MR
[41] Wei, Y., Ding, J.: Representations for Moore-Penrose inverses in Hilbert spaces. Appl. Math. Lett. 14 (2001), 599-604. | DOI | MR | Zbl
[42] Wei, Y., Wu, H.: Expression for the perturbation of the weighted Moore-Penrose inverse. Comput. Math. Appl. 39 (2000), 13-18. | DOI | MR | Zbl
[43] Wei, Y., Xie, P., Zhang, L.: Tikhonov regularization and randomized GSVD. SIAM J. Matrix Anal. Appl. 37 (2016), 649-675. | DOI | MR | Zbl
[44] Xu, W., Wei, Y., Qiao, S.: Condition numbers for structured least squares problems. BIT 46 (2006), 203-225. | DOI | MR | Zbl
[45] Zhou, L., Lin, L., Wei, Y., Qiao, S.: Perturbation analysis and condition numbers of scaled total least squares problems. Numer. Algorithms 51 (2009), 381-399. | DOI | MR | Zbl
[46] Zielke, G.: Report on test matrices for generalized inverses. Computing 36 (1986), 105-162. | DOI | MR | Zbl
Cité par Sources :