Linear preservers of row-dense matrices
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 847-858 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathbf {M}_{m,n}$ be the set of all $m\times n$ real matrices. A matrix $A\in \mathbf {M}_{m,n}$ is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions $T\colon \mathbf {M}_{m,n} \rightarrow \mathbf {M}_{m,n}$ that preserve or strongly preserve row-dense matrices, i.e., $T(A)$ is row-dense whenever $A$ is row-dense or $T(A)$ is row-dense if and only if $A$ is row-dense, respectively. Similarly, a matrix $A\in \mathbf {M}_{n,m}$ is called a column-dense matrix if every column of $A$ is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found.
Let $\mathbf {M}_{m,n}$ be the set of all $m\times n$ real matrices. A matrix $A\in \mathbf {M}_{m,n}$ is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions $T\colon \mathbf {M}_{m,n} \rightarrow \mathbf {M}_{m,n}$ that preserve or strongly preserve row-dense matrices, i.e., $T(A)$ is row-dense whenever $A$ is row-dense or $T(A)$ is row-dense if and only if $A$ is row-dense, respectively. Similarly, a matrix $A\in \mathbf {M}_{n,m}$ is called a column-dense matrix if every column of $A$ is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found.
DOI : 10.1007/s10587-016-0296-4
Classification : 15A04, 15A21
Keywords: row-dense matrix; linear preserver; strong linear preserver
@article{10_1007_s10587_016_0296_4,
     author = {Motlaghian, Sara M. and Armandnejad, Ali and Hall, Frank J.},
     title = {Linear preservers of row-dense matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {847--858},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0296-4},
     mrnumber = {3556871},
     zbl = {06644037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0296-4/}
}
TY  - JOUR
AU  - Motlaghian, Sara M.
AU  - Armandnejad, Ali
AU  - Hall, Frank J.
TI  - Linear preservers of row-dense matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 847
EP  - 858
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0296-4/
DO  - 10.1007/s10587-016-0296-4
LA  - en
ID  - 10_1007_s10587_016_0296_4
ER  - 
%0 Journal Article
%A Motlaghian, Sara M.
%A Armandnejad, Ali
%A Hall, Frank J.
%T Linear preservers of row-dense matrices
%J Czechoslovak Mathematical Journal
%D 2016
%P 847-858
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0296-4/
%R 10.1007/s10587-016-0296-4
%G en
%F 10_1007_s10587_016_0296_4
Motlaghian, Sara M.; Armandnejad, Ali; Hall, Frank J. Linear preservers of row-dense matrices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 847-858. doi: 10.1007/s10587-016-0296-4

[1] Fiedler, M., Hall, F. J., Stroev, M.: Dense alternating sign matrices and extensions. Linear Algebra Appl. 444 (2014), 219-226. | MR | Zbl

[2] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch Linear Substitutionen. Berl. Ber. 1897 (1897), German 994-1015.

[3] Nadoshan, M. A. Hadian, Armandnejad, A.: $B$-majorization and its linear preservers. Linear Algebra Appl. 478 (2015), 218-227. | MR

[4] Hogben, L.: Handbook of Linear Algebra. Discrete Mathematics and Its Applications Chapman & Hall/CRC Press, Boca Raton (2014). | MR | Zbl

[5] Li, C.-K., Pierce, S.: Linear preserver problems. Am. Math. Mon. 108 (2001), 591-605. | DOI | MR | Zbl

[6] Pierce, S., Lim, M. H., Lowey, R., Li, Ch.-K., Tsing, N.-K., McDonald, B. R., Basley, L.: A survey of linear preserver problems. Linear Multilinear Algebra 33 (1992), 1-129. | DOI

[7] Soleymani, M., Armandnejad, A.: Linear preservers of even majorization on $M_{n,m}$. Linear Multilinear Algebra 62 (2014), 1437-1449. | DOI | MR | Zbl

Cité par Sources :