Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 829-845
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by a sparse linear prolongator smoother. The tentative prolongator is responsible for the approximation, while the prolongator smoother enforces the smoothness of the coarse-level basis functions.
The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by a sparse linear prolongator smoother. The tentative prolongator is responsible for the approximation, while the prolongator smoother enforces the smoothness of the coarse-level basis functions.
DOI : 10.1007/s10587-016-0295-5
Classification : 65F10, 65N12, 65N55
Keywords: smoothed aggregation; improved convergence bound
@article{10_1007_s10587_016_0295_5,
     author = {Brousek, Jan and Fra\v{n}kov\'a, Pavla and Van\v{e}k, Petr},
     title = {Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels},
     journal = {Czechoslovak Mathematical Journal},
     pages = {829--845},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0295-5},
     mrnumber = {3556870},
     zbl = {06644036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0295-5/}
}
TY  - JOUR
AU  - Brousek, Jan
AU  - Fraňková, Pavla
AU  - Vaněk, Petr
TI  - Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 829
EP  - 845
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0295-5/
DO  - 10.1007/s10587-016-0295-5
LA  - en
ID  - 10_1007_s10587_016_0295_5
ER  - 
%0 Journal Article
%A Brousek, Jan
%A Fraňková, Pavla
%A Vaněk, Petr
%T Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels
%J Czechoslovak Mathematical Journal
%D 2016
%P 829-845
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0295-5/
%R 10.1007/s10587-016-0295-5
%G en
%F 10_1007_s10587_016_0295_5
Brousek, Jan; Fraňková, Pavla; Vaněk, Petr. Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 829-845. doi: 10.1007/s10587-016-0295-5

[1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput. 57 (1991), 23-45. | DOI | MR | Zbl

[2] Brezina, M., Vaněk, P., Vassilevski, P. S.: An improved convergence analysis of smoothed aggregation algebraic multigrid. Numer. Linear Algebra Appl. 19 (2012), 441-469. | DOI | MR | Zbl

[3] Fraňková, P., Mandel, J., Vaněk, P.: Model analysis of BPX preconditioner based on smoothed aggregations. Appl. Math., Praha 60 (2015), 219-250. | DOI | MR

[4] Vaněk, P.: Fast multigrid solver. Appl. Math., Praha 40 (1995), 1-20. | MR | Zbl

[5] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operator. Appl. Math., Praha 37 (1992), 265-274. | MR

[6] Vaněk, P., Brezina, M.: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing. Appl. Math., Praha 58 (2013), 369-388. | DOI | MR | Zbl

[7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregations. Numer. Math. 88 (2001), 559-579. | DOI | MR

[8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes. SIAM J. Sci Comput. 21 (1999), 900-923. | DOI | MR

[9] Vaněk, P., Mandel, J., Brezina, R.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56 (1996), 179-196. | DOI | MR

Cité par Sources :