Keywords: Banach algebra; $C^*$-algebra; (self-adjoint) idempotent; connected component of (self-adjoint) algebraic elements; (local) pathwise connectedness; similarity; analytic path; polynomial path; polygonal path; centre of a Banach algebra; distance of connected components
@article{10_1007_s10587_016_0294_6,
author = {Makai, Endre Jr. and Zem\'anek, Jaroslav},
title = {Nice connecting paths in connected components of sets of algebraic elements in a {Banach} algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {821--828},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0294-6},
mrnumber = {3556869},
zbl = {06644035},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0294-6/}
}
TY - JOUR AU - Makai, Endre Jr. AU - Zemánek, Jaroslav TI - Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra JO - Czechoslovak Mathematical Journal PY - 2016 SP - 821 EP - 828 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0294-6/ DO - 10.1007/s10587-016-0294-6 LA - en ID - 10_1007_s10587_016_0294_6 ER -
%0 Journal Article %A Makai, Endre Jr. %A Zemánek, Jaroslav %T Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra %J Czechoslovak Mathematical Journal %D 2016 %P 821-828 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0294-6/ %R 10.1007/s10587-016-0294-6 %G en %F 10_1007_s10587_016_0294_6
Makai, Endre Jr.; Zemánek, Jaroslav. Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 821-828. doi: 10.1007/s10587-016-0294-6
[1] B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zemánek: The connected components of the idempotents in the Calkin algebra, and their liftings. Operator Theory and Banach Algebras, Proc. Int. Conf. in Analysis, Rabat, 1999 M. Chidami et al. Theta, Bucharest (2003), 23-30. | MR | Zbl
[2] Boulmaarouf, Z., Miranda, M. Fernandez, Labrousse, J.-Ph.: An algorithmic approach to orthogonal projections and Moore-Penrose inverses. Numer. Funct. Anal. Optimization 18 (1997), 55-63. | DOI | MR
[3] Esterle, J.: Polynomial connections between projections in Banach algebras. Bull. Lond. Math. Soc. 15 (1983), 253-254. | DOI | MR | Zbl
[4] Kovarik, Z. V.: Similarity and interpolation between projectors. Acta Sci. Math. 39 (1977), 341-351. | MR | Zbl
[5] Maeda, S.: On arcs in the space of projections of a $C^*$-algebra. Math. Jap. 21 (1976), 371-374. | MR | Zbl
[6] E. Makai, Jr.: Algebraic elements in Banach algebras (joint work with J. Zemánek). 6th Linear Algebra Workshop, Book of Abstracts Kranjska Gora (2011), p. 26.
[7] E. Makai, Jr., J. Zemánek: On the structure of the set of elements in a Banach algebra which satisfy a given polynomial equation, and their liftings. Available at www.renyi.mta.hu/ {makai}.
[8] E. Makai, Jr., J. Zemánek: On polynomial connections between projections. Linear Algebra Appl. 126 (1989), 91-94. | MR | Zbl
[9] Trémon, M.: On the degree of polynomials connecting two idempotents of a Banach algebra. Proc. R. Ir. Acad. Sect. A 95 (1995), 233-235. | MR | Zbl
[10] Tremon, M.: Polynômes de degré minimum connectant deux projections dans une algèbre de Banach. Linear Algebra Appl. French 64 (1985), 115-132. | MR | Zbl
[11] Zemánek, J.: Idempotents in Banach algebras. Bull. Lond. Math. Soc. 11 (1979), 177-183. | DOI | MR | Zbl
Cité par Sources :