Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 821-828 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a $C^*$-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a $C^*$-algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the given equation. We also formulate open questions.
Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a $C^*$-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a $C^*$-algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the given equation. We also formulate open questions.
DOI : 10.1007/s10587-016-0294-6
Classification : 46H20, 46L05
Keywords: Banach algebra; $C^*$-algebra; (self-adjoint) idempotent; connected component of (self-adjoint) algebraic elements; (local) pathwise connectedness; similarity; analytic path; polynomial path; polygonal path; centre of a Banach algebra; distance of connected components
@article{10_1007_s10587_016_0294_6,
     author = {Makai, Endre Jr. and Zem\'anek, Jaroslav},
     title = {Nice connecting paths in connected components of sets of algebraic elements in a {Banach} algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {821--828},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0294-6},
     mrnumber = {3556869},
     zbl = {06644035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0294-6/}
}
TY  - JOUR
AU  - Makai, Endre Jr.
AU  - Zemánek, Jaroslav
TI  - Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 821
EP  - 828
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0294-6/
DO  - 10.1007/s10587-016-0294-6
LA  - en
ID  - 10_1007_s10587_016_0294_6
ER  - 
%0 Journal Article
%A Makai, Endre Jr.
%A Zemánek, Jaroslav
%T Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra
%J Czechoslovak Mathematical Journal
%D 2016
%P 821-828
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0294-6/
%R 10.1007/s10587-016-0294-6
%G en
%F 10_1007_s10587_016_0294_6
Makai, Endre Jr.; Zemánek, Jaroslav. Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 821-828. doi: 10.1007/s10587-016-0294-6

[1] B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zemánek: The connected components of the idempotents in the Calkin algebra, and their liftings. Operator Theory and Banach Algebras, Proc. Int. Conf. in Analysis, Rabat, 1999 M. Chidami et al. Theta, Bucharest (2003), 23-30. | MR | Zbl

[2] Boulmaarouf, Z., Miranda, M. Fernandez, Labrousse, J.-Ph.: An algorithmic approach to orthogonal projections and Moore-Penrose inverses. Numer. Funct. Anal. Optimization 18 (1997), 55-63. | DOI | MR

[3] Esterle, J.: Polynomial connections between projections in Banach algebras. Bull. Lond. Math. Soc. 15 (1983), 253-254. | DOI | MR | Zbl

[4] Kovarik, Z. V.: Similarity and interpolation between projectors. Acta Sci. Math. 39 (1977), 341-351. | MR | Zbl

[5] Maeda, S.: On arcs in the space of projections of a $C^*$-algebra. Math. Jap. 21 (1976), 371-374. | MR | Zbl

[6] E. Makai, Jr.: Algebraic elements in Banach algebras (joint work with J. Zemánek). 6th Linear Algebra Workshop, Book of Abstracts Kranjska Gora (2011), p. 26.

[7] E. Makai, Jr., J. Zemánek: On the structure of the set of elements in a Banach algebra which satisfy a given polynomial equation, and their liftings. Available at www.renyi.mta.hu/ {makai}.

[8] E. Makai, Jr., J. Zemánek: On polynomial connections between projections. Linear Algebra Appl. 126 (1989), 91-94. | MR | Zbl

[9] Trémon, M.: On the degree of polynomials connecting two idempotents of a Banach algebra. Proc. R. Ir. Acad. Sect. A 95 (1995), 233-235. | MR | Zbl

[10] Tremon, M.: Polynômes de degré minimum connectant deux projections dans une algèbre de Banach. Linear Algebra Appl. French 64 (1985), 115-132. | MR | Zbl

[11] Zemánek, J.: Idempotents in Banach algebras. Bull. Lond. Math. Soc. 11 (1979), 177-183. | DOI | MR | Zbl

Cité par Sources :