Keywords: geometric mean; positive definite matrix; log majorization; geodesics; geodesically convex; geodesic convex hull; unitarily invariant norm
@article{10_1007_s10587_016_0292_8,
author = {Dinh, Trung Hoa and Ahsani, Sima and Tam, Tin-Yau},
title = {Geometry and inequalities of geometric mean},
journal = {Czechoslovak Mathematical Journal},
pages = {777--792},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0292-8},
mrnumber = {3556867},
zbl = {06644033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0292-8/}
}
TY - JOUR AU - Dinh, Trung Hoa AU - Ahsani, Sima AU - Tam, Tin-Yau TI - Geometry and inequalities of geometric mean JO - Czechoslovak Mathematical Journal PY - 2016 SP - 777 EP - 792 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0292-8/ DO - 10.1007/s10587-016-0292-8 LA - en ID - 10_1007_s10587_016_0292_8 ER -
%0 Journal Article %A Dinh, Trung Hoa %A Ahsani, Sima %A Tam, Tin-Yau %T Geometry and inequalities of geometric mean %J Czechoslovak Mathematical Journal %D 2016 %P 777-792 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0292-8/ %R 10.1007/s10587-016-0292-8 %G en %F 10_1007_s10587_016_0292_8
Dinh, Trung Hoa; Ahsani, Sima; Tam, Tin-Yau. Geometry and inequalities of geometric mean. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 777-792. doi: 10.1007/s10587-016-0292-8
[1] Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26 (1979), 203-241. | DOI | MR | Zbl
[2] Ando, T., Hiai, F.: Log majorization and complementary Golden-Thompson type inequalities. Linear Algebra Appl. 197/198 (1994), 113-131. | MR | Zbl
[3] Araki, H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19 (1990), 167-170. | DOI | MR | Zbl
[4] Audenaert, K. M. R.: A norm inequality for pairs of commuting positive semidefinite matrices. Electron. J. Linear Algebra (electronic only) 30 (2015), 80-84. | MR | Zbl
[5] Bhatia, R.: The Riemannian mean of positive matrices. Matrix Information Geometry Springer, Berlin F. Nielsen et al. (2013), 35-51. | DOI | MR | Zbl
[6] Bhatia, R.: Postitive Definite Matrices. Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). | MR
[7] Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics 169 Springer, New York (1997). | MR
[8] Bhatia, R., Grover, P.: Norm inequalities related to the matrix geometric mean. Linear Algebra Appl. 437 (2012), 726-733. | MR | Zbl
[9] Bourin, J.-C.: Matrix subadditivity inequalities and block-matrices. Int. J. Math. 20 (2009), 679-691. | DOI | MR | Zbl
[10] Bourin, J.-C., Uchiyama, M.: A matrix subadditivity inequality for {$f(A+B)$} and {$f(A)+f(B)$}. Linear Algebra Appl. 423 (2007), 512-518. | MR | Zbl
[11] Fiedler, M., Pták, V.: A new positive definite geometric mean of two positive definite matrices. Linear Algebra Appl. 251 (1997), 1-20. | MR | Zbl
[12] Hayajneh, S., Kittaneh, F.: Trace inequalities and a question of Bourin. Bull. Aust. Math. Soc. 88 (2013), 384-389. | DOI | MR | Zbl
[13] Lin, M.: Remarks on two recent results of Audenaert. Linear Algebra Appl. 489 (2016), 24-29. | MR | Zbl
[14] Lin, M.: Inequalities related to {$2\times2$} block PPT matrices. Oper. Matrices 9 (2015), 917-924. | DOI | MR
[15] Marshall, A. W., Olkin, I., Arnold, B. C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics Springer, New York (2011). | MR | Zbl
[16] Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematics and Theoretical Physics 6 European Mathematical Society, Zürich (2005). | MR | Zbl
[17] Pusz, W., Woronowicz, S. L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8 (1975), 159-170. | DOI | MR | Zbl
[18] Thompson, R. C.: Singular values, diagonal elements, and convexity. SIAM J. Appl. Math. 32 (1977), 39-63. | DOI | MR | Zbl
[19] Zhan, X.: Matrix Inequalities. Lecture Notes in Mathematics 1790 Springer, Berlin (2002). | DOI | MR | Zbl
Cité par Sources :