Geometry and inequalities of geometric mean
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 777-792
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study some geometric properties associated with the $t$-geometric means $A\sharp _{t}B := A^{1/2}(A^{-1/2}BA^{-1/2})^{t}A^{1/2}$ of two $n\times n$ positive definite matrices $A$ and $B$. Some geodesical convexity results with respect to the Riemannian structure of the $n\times n$ positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding $m$ pairs of positive definite matrices is posted.
We study some geometric properties associated with the $t$-geometric means $A\sharp _{t}B := A^{1/2}(A^{-1/2}BA^{-1/2})^{t}A^{1/2}$ of two $n\times n$ positive definite matrices $A$ and $B$. Some geodesical convexity results with respect to the Riemannian structure of the $n\times n$ positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding $m$ pairs of positive definite matrices is posted.
DOI : 10.1007/s10587-016-0292-8
Classification : 15A45, 15B48
Keywords: geometric mean; positive definite matrix; log majorization; geodesics; geodesically convex; geodesic convex hull; unitarily invariant norm
@article{10_1007_s10587_016_0292_8,
     author = {Dinh, Trung Hoa and Ahsani, Sima and Tam, Tin-Yau},
     title = {Geometry and inequalities of geometric mean},
     journal = {Czechoslovak Mathematical Journal},
     pages = {777--792},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0292-8},
     mrnumber = {3556867},
     zbl = {06644033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0292-8/}
}
TY  - JOUR
AU  - Dinh, Trung Hoa
AU  - Ahsani, Sima
AU  - Tam, Tin-Yau
TI  - Geometry and inequalities of geometric mean
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 777
EP  - 792
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0292-8/
DO  - 10.1007/s10587-016-0292-8
LA  - en
ID  - 10_1007_s10587_016_0292_8
ER  - 
%0 Journal Article
%A Dinh, Trung Hoa
%A Ahsani, Sima
%A Tam, Tin-Yau
%T Geometry and inequalities of geometric mean
%J Czechoslovak Mathematical Journal
%D 2016
%P 777-792
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0292-8/
%R 10.1007/s10587-016-0292-8
%G en
%F 10_1007_s10587_016_0292_8
Dinh, Trung Hoa; Ahsani, Sima; Tam, Tin-Yau. Geometry and inequalities of geometric mean. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 777-792. doi: 10.1007/s10587-016-0292-8

[1] Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26 (1979), 203-241. | DOI | MR | Zbl

[2] Ando, T., Hiai, F.: Log majorization and complementary Golden-Thompson type inequalities. Linear Algebra Appl. 197/198 (1994), 113-131. | MR | Zbl

[3] Araki, H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19 (1990), 167-170. | DOI | MR | Zbl

[4] Audenaert, K. M. R.: A norm inequality for pairs of commuting positive semidefinite matrices. Electron. J. Linear Algebra (electronic only) 30 (2015), 80-84. | MR | Zbl

[5] Bhatia, R.: The Riemannian mean of positive matrices. Matrix Information Geometry Springer, Berlin F. Nielsen et al. (2013), 35-51. | DOI | MR | Zbl

[6] Bhatia, R.: Postitive Definite Matrices. Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). | MR

[7] Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics 169 Springer, New York (1997). | MR

[8] Bhatia, R., Grover, P.: Norm inequalities related to the matrix geometric mean. Linear Algebra Appl. 437 (2012), 726-733. | MR | Zbl

[9] Bourin, J.-C.: Matrix subadditivity inequalities and block-matrices. Int. J. Math. 20 (2009), 679-691. | DOI | MR | Zbl

[10] Bourin, J.-C., Uchiyama, M.: A matrix subadditivity inequality for {$f(A+B)$} and {$f(A)+f(B)$}. Linear Algebra Appl. 423 (2007), 512-518. | MR | Zbl

[11] Fiedler, M., Pták, V.: A new positive definite geometric mean of two positive definite matrices. Linear Algebra Appl. 251 (1997), 1-20. | MR | Zbl

[12] Hayajneh, S., Kittaneh, F.: Trace inequalities and a question of Bourin. Bull. Aust. Math. Soc. 88 (2013), 384-389. | DOI | MR | Zbl

[13] Lin, M.: Remarks on two recent results of Audenaert. Linear Algebra Appl. 489 (2016), 24-29. | MR | Zbl

[14] Lin, M.: Inequalities related to {$2\times2$} block PPT matrices. Oper. Matrices 9 (2015), 917-924. | DOI | MR

[15] Marshall, A. W., Olkin, I., Arnold, B. C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics Springer, New York (2011). | MR | Zbl

[16] Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematics and Theoretical Physics 6 European Mathematical Society, Zürich (2005). | MR | Zbl

[17] Pusz, W., Woronowicz, S. L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8 (1975), 159-170. | DOI | MR | Zbl

[18] Thompson, R. C.: Singular values, diagonal elements, and convexity. SIAM J. Appl. Math. 32 (1977), 39-63. | DOI | MR | Zbl

[19] Zhan, X.: Matrix Inequalities. Lecture Notes in Mathematics 1790 Springer, Berlin (2002). | DOI | MR | Zbl

Cité par Sources :