Keywords: stochastic matrix; random walk centrality; Kemeny's constant
@article{10_1007_s10587_016_0291_9,
author = {Kirkland, Steve},
title = {Random walk centrality and a partition of {Kemeny's} constant},
journal = {Czechoslovak Mathematical Journal},
pages = {757--775},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0291-9},
mrnumber = {3556866},
zbl = {06644032},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0291-9/}
}
TY - JOUR AU - Kirkland, Steve TI - Random walk centrality and a partition of Kemeny's constant JO - Czechoslovak Mathematical Journal PY - 2016 SP - 757 EP - 775 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0291-9/ DO - 10.1007/s10587-016-0291-9 LA - en ID - 10_1007_s10587_016_0291_9 ER -
Kirkland, Steve. Random walk centrality and a partition of Kemeny's constant. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 757-775. doi: 10.1007/s10587-016-0291-9
[1] Campbell, S., Meyer, C. D.: Generalized Inverses of Linear Transformations. Classics in Applied Mathematics 56 SIAM, Philadelphia (2009). | MR | Zbl
[2] Chartrand, G., Lesniak, L.: Graphs and Digraphs. Chapman and Hall, Boca Raton (2005). | MR | Zbl
[3] Kirkland, S. J.: On a question concerning condition numbers for Markov chains. SIAM J. Matrix Anal. Appl. 23 (2002), 1109-1119. | DOI | MR | Zbl
[4] Kirkland, S. J., Neumann, M.: Group Inverses of M-matrices and Their Applications. CRC Press, Boca Raton (2013). | MR | Zbl
[5] Kirkland, S. J., Neumann, M., Shader, B. L.: Bounds on the subdominant eigenvalue involving group inverses with applications to graphs. Czech. Math. J. 47 (1998), 1-20. | DOI | MR | Zbl
[6] Levene, M., Loizou, G.: Kemeny's constant and the random surfer. Am. Math. Mon. 109 (2002), 741-745. | DOI | MR | Zbl
[7] Meyer, C. D.: Sensitivity of the stationary distribution of a Markov chain. SIAM J. Matrix Anal. Appl. 15 (1994), 715-728. | DOI | MR | Zbl
[8] Noh, J., Reiger, H.: Random walks on complex networks. Physical Review Letters 92 (2004), 118701, 5 pages.
[9] Seneta, E.: Non-Negative Matrices and Markov Chains. Springer Series in Statistics Springer, New York (1981). | MR | Zbl
Cité par Sources :