Keywords: maximum nullity; zero forcing number; positive zero forcing number; line graphs; matrix; tree; positive semidefinite matrix; unicyclic graph
@article{10_1007_s10587_016_0290_x,
author = {Fallat, Shaun and Soltani, Abolghasem},
title = {Line graphs: their maximum nullities and zero forcing numbers},
journal = {Czechoslovak Mathematical Journal},
pages = {743--755},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0290-x},
mrnumber = {3556865},
zbl = {06644031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0290-x/}
}
TY - JOUR AU - Fallat, Shaun AU - Soltani, Abolghasem TI - Line graphs: their maximum nullities and zero forcing numbers JO - Czechoslovak Mathematical Journal PY - 2016 SP - 743 EP - 755 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0290-x/ DO - 10.1007/s10587-016-0290-x LA - en ID - 10_1007_s10587_016_0290_x ER -
%0 Journal Article %A Fallat, Shaun %A Soltani, Abolghasem %T Line graphs: their maximum nullities and zero forcing numbers %J Czechoslovak Mathematical Journal %D 2016 %P 743-755 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0290-x/ %R 10.1007/s10587-016-0290-x %G en %F 10_1007_s10587_016_0290_x
Fallat, Shaun; Soltani, Abolghasem. Line graphs: their maximum nullities and zero forcing numbers. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 743-755. doi: 10.1007/s10587-016-0290-x
[1] Group, AIM Minimum Rank -- Special Graphs Work: Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428 (2008), 1628-1648. | MR
[2] Alinaghipour, F.: Zero Forcing Set for Graphs. PhD Dissertation, University of Regina (2013). | MR
[3] Barioli, F., Barrett, W., Fallat, S., Hall, H. T., Hogben, L., Shader, B., Driessche, P. van den, Holst, H. van der: Zero forcing parameters and minimum rank problems. Linear Algebra Appl. 433 (2010), 401-411. | MR
[4] Barioli, F., Fallat, S., Hogben, L.: On the difference between the maximum multiplicity and path cover number for tree-like graphs. Linear Algebra Appl. 409 (2005), 13-31. | MR | Zbl
[5] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, L. H. Mitchell, S. K. Narayan, A. Pascoe, K. Steinmetz, B. D. Sutton, W. Wang: On the minimum rank among positive semidefinite matrices with a given graph. SIAM J. Matrix Anal. Appl. 30 (2008), 731-740. | DOI | MR
[6] Edholm, C. J., Hogben, L., Huynh, M., LaGrange, J., Row, D. D.: Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph. Linear Algebra Appl. 436 (2012), 4352-4372. | MR | Zbl
[7] J. Ekstrand, C. Erickson, H. T. Hall, D. Hay, L. Hogben, R. Johnson, N. Kingsley, S. Osborne, T. Peters, J. Roat, A. Ross, D. D. Row, N. Warnberg, M. Young: Positive semidefinite zero forcing. Linear Algebra Appl. 439 (2013), 1862-1874. | MR
[8] Ekstrand, J., Erickson, C., Hay, D., Hogben, L., Roat, J.: Note on positive semidefinite maximum nullity and positive semidefinite zero forcing number of partial $2$-trees. Electron. J. Linear Algebra. (electronic only) 23 (2012), 79-87. | MR | Zbl
[9] Eroh, L., Kang, C. X., Yi, E.: A Comparison between the Metric Dimension and Zero Forcing Number of Line Graphs. (2012), 14 pages arXiv:1207.6127v1 [math.CO]. | MR
[10] Fallat, S. M., Hogben, L.: Chapter 46: Minimum rank, maximum nullity, and zero forcing number of graphs. Handbook of Linear Algebra L. Hogben CRC Press, Boca Raton (2014), 46-1-46-36. | MR
[11] Fallat, S., Hogben, L.: The minimum rank of symmetric matrices described by a graph: a survey. Linear Algebra Appl. 426 (2007), 558-582. | MR | Zbl
[12] Nylen, P. M.: Minimum-rank matrices with prescribed graph. Linear Algebra Appl. 248 (1996), 303-316. | MR | Zbl
[13] Owens, K.: Properties of the Zero Forcing Number. Master's Thesis, Brigham Young University (2009).
[14] Peters, T.: Positive semidefinite maximum nullity and zero forcing number. Electron. J. Linear Algebra (electronic only) 23 (2012), 815-830. | MR | Zbl
[15] Row, D. D.: A technique for computing the zero forcing number of a graph with a cut-vertex. Linear Algebra Appl. 436 (2012), 4423-4432. | MR | Zbl
[16] Yu, X.: Cyclomatic numbers of connected induced subgraphs. Discrete Math. 105 (1992), 275-284. | DOI | MR | Zbl
Cité par Sources :