A treatment of a determinant inequality of Fiedler and Markham
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 737-742
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Fiedler and Markham (1994) proved $$ \Big (\frac {\mathop {\rm det } \widehat {H}}{k}\Big )^{ k}\ge \mathop {\rm det } H, $$ where $H=(H_{ij})_{i,j=1}^n$ is a positive semidefinite matrix partitioned into $n\times n$ blocks with each block $k\times k$ and $\widehat {H}=(\mathop {\rm tr} H_{ij})_{i,j=1}^n$. We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove $$ \mathop {\rm det }(I_n+\widehat {H}) \ge \mathop {\rm det }(I_{nk}+kH)^{{1}/{k}}.$$
DOI :
10.1007/s10587-016-0289-3
Classification :
15A45
Keywords: determinant inequality; partial trace
Keywords: determinant inequality; partial trace
@article{10_1007_s10587_016_0289_3,
author = {Lin, Minghua},
title = {A treatment of a determinant inequality of {Fiedler} and {Markham}},
journal = {Czechoslovak Mathematical Journal},
pages = {737--742},
publisher = {mathdoc},
volume = {66},
number = {3},
year = {2016},
doi = {10.1007/s10587-016-0289-3},
mrnumber = {3556864},
zbl = {06644030},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0289-3/}
}
TY - JOUR AU - Lin, Minghua TI - A treatment of a determinant inequality of Fiedler and Markham JO - Czechoslovak Mathematical Journal PY - 2016 SP - 737 EP - 742 VL - 66 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0289-3/ DO - 10.1007/s10587-016-0289-3 LA - en ID - 10_1007_s10587_016_0289_3 ER -
%0 Journal Article %A Lin, Minghua %T A treatment of a determinant inequality of Fiedler and Markham %J Czechoslovak Mathematical Journal %D 2016 %P 737-742 %V 66 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0289-3/ %R 10.1007/s10587-016-0289-3 %G en %F 10_1007_s10587_016_0289_3
Lin, Minghua. A treatment of a determinant inequality of Fiedler and Markham. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 737-742. doi: 10.1007/s10587-016-0289-3
Cité par Sources :