Keywords: determinant inequality; partial trace
@article{10_1007_s10587_016_0289_3,
author = {Lin, Minghua},
title = {A treatment of a determinant inequality of {Fiedler} and {Markham}},
journal = {Czechoslovak Mathematical Journal},
pages = {737--742},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0289-3},
mrnumber = {3556864},
zbl = {06644030},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0289-3/}
}
TY - JOUR AU - Lin, Minghua TI - A treatment of a determinant inequality of Fiedler and Markham JO - Czechoslovak Mathematical Journal PY - 2016 SP - 737 EP - 742 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0289-3/ DO - 10.1007/s10587-016-0289-3 LA - en ID - 10_1007_s10587_016_0289_3 ER -
Lin, Minghua. A treatment of a determinant inequality of Fiedler and Markham. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 737-742. doi: 10.1007/s10587-016-0289-3
[1] Bhatia, R.: Positive Definite Matrices. Texts and Readings in Mathematics 44. New Delhi: Hindustan Book Agency, Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). | MR | Zbl
[2] Bourin, J.-C., Lee, E.-Y., Lin, M.: Positive matrices partitioned into a small number of Hermitian blocks. Linear Algebra Appl. 438 (2013), 2591-2598. | MR | Zbl
[3] Pillis, J. de: Transformations on partitioned matrices. Duke Math. J. 36 (1969), 511-515. | DOI | MR | Zbl
[4] Fiedler, M., Markham, T. L.: On a theorem of Everitt, Thompson, and de Pillis. Math. Slovaca 44 (1994), 441-444. | MR | Zbl
[5] Hiroshima, T.: Majorization criterion for distillability of a bipartite quantum state. Phys. Rev. Lett. 91 (2003), no. 057902, 4 pages. | DOI
[6] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | MR | Zbl
[7] Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223 (1996), 1-8. | DOI | MR | Zbl
[8] Jenčová, A., Ruskai, M. B.: A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality. Rev. Math. Phys. 22 (2010), 1099-1121. | DOI | MR | Zbl
[9] Lin, M.: Some applications of a majorization inequality due to Bapat and Sunder. Linear Algebra Appl. 469 (2015), 510-517. | MR | Zbl
[10] Petz, D.: Quantum Information Theory and Quantum Statistics. Theoretical and Mathematical Physics Springer, Berlin (2008). | MR | Zbl
[11] Rastegin, A. E.: Relations for symmetric norms and anti-norms before and after partial trace. J. Stat. Phys. 148 (2012), 1040-1053. | DOI | MR
Cité par Sources :