Keywords: perturbed Laplacian matrix; Fiedler vector; algebraic connectivity; graph partitioning
@article{10_1007_s10587_016_0288_4,
author = {Rocha, Israel and Trevisan, Vilmar},
title = {A {Fiedler-like} theory for the perturbed {Laplacian}},
journal = {Czechoslovak Mathematical Journal},
pages = {717--735},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0288-4},
mrnumber = {3556863},
zbl = {06644029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0288-4/}
}
TY - JOUR AU - Rocha, Israel AU - Trevisan, Vilmar TI - A Fiedler-like theory for the perturbed Laplacian JO - Czechoslovak Mathematical Journal PY - 2016 SP - 717 EP - 735 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0288-4/ DO - 10.1007/s10587-016-0288-4 LA - en ID - 10_1007_s10587_016_0288_4 ER -
%0 Journal Article %A Rocha, Israel %A Trevisan, Vilmar %T A Fiedler-like theory for the perturbed Laplacian %J Czechoslovak Mathematical Journal %D 2016 %P 717-735 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0288-4/ %R 10.1007/s10587-016-0288-4 %G en %F 10_1007_s10587_016_0288_4
Rocha, Israel; Trevisan, Vilmar. A Fiedler-like theory for the perturbed Laplacian. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 717-735. doi: 10.1007/s10587-016-0288-4
[1] Bapat, R. B., Kirkland, S. J., Pati, S.: The perturbed Laplacian matrix of a graph. Linear Multilinear Algebra 49 (2001), 219-242. | DOI | MR | Zbl
[2] Butler, S.: Eigenvalues and Structures of Graphs. PhD Disssertation, University of California, San Diego (2008). | MR
[3] Cavers, M.: The Normalized Laplacian Matrix and General Randic Index of Graphs. PhD Dissertation, University of Regina, 2010. | MR
[4] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92 American Mathematical Society, Providence (1997). | MR | Zbl
[5] Chung, F. R. K., Richardson, R. M.: Weighted Laplacians and the sigma function of a graph. Proc. of an AMS-IMS-SIAM joint summer research conf. on Quantum Graphs and Their Applications, Snowbird, 2005 B. Berkolaiko et al. Contemporary Mathematics 415 (2006), 93-107. | DOI | MR | Zbl
[6] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619-633. | DOI | MR | Zbl
[7] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | Zbl
[8] Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs. Linear Multilinear Algebra 44 (1998), 131-148. | DOI | MR | Zbl
[9] Kirkland, S., Neumann, M., Shader, B. L.: Characteristic vertices of weighted trees via Perron values. Linear Multilinear Algebra 40 (1996), 311-325. | DOI | MR | Zbl
[10] Li, H.-H., Li, J.-S., Fan, Y.-Z.: The effect on the second smallest eigenvalue of the normalized Laplacian of a graph by grafting edges. Linear Multilinear Algebra 56 (2008), 627-638. | DOI | MR | Zbl
[11] Merris, R.: Characteristic vertices of trees. 22 (1987), Linear Multilinear Algebra 115-131. | DOI | MR | Zbl
[12] Nikiforov, V.: The influence of Miroslav Fiedler on spectral graph theory. Linear Algebra Appl. 439 (2013), 818-821. | MR | Zbl
Cité par Sources :