A sharp upper bound for the spectral radius of a nonnegative matrix and applications
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 701-715
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results.
We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results.
DOI : 10.1007/s10587-016-0287-5
Classification : 05C50, 15A18
Keywords: nonnegative matrix; spectral radius; graph; digraph
@article{10_1007_s10587_016_0287_5,
     author = {You, Lihua and Shu, Yujie and Zhang, Xiao-Dong},
     title = {A sharp upper bound for the spectral radius of a nonnegative matrix and applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {701--715},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0287-5},
     mrnumber = {3556862},
     zbl = {06644028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0287-5/}
}
TY  - JOUR
AU  - You, Lihua
AU  - Shu, Yujie
AU  - Zhang, Xiao-Dong
TI  - A sharp upper bound for the spectral radius of a nonnegative matrix and applications
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 701
EP  - 715
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0287-5/
DO  - 10.1007/s10587-016-0287-5
LA  - en
ID  - 10_1007_s10587_016_0287_5
ER  - 
%0 Journal Article
%A You, Lihua
%A Shu, Yujie
%A Zhang, Xiao-Dong
%T A sharp upper bound for the spectral radius of a nonnegative matrix and applications
%J Czechoslovak Mathematical Journal
%D 2016
%P 701-715
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0287-5/
%R 10.1007/s10587-016-0287-5
%G en
%F 10_1007_s10587_016_0287_5
You, Lihua; Shu, Yujie; Zhang, Xiao-Dong. A sharp upper bound for the spectral radius of a nonnegative matrix and applications. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 701-715. doi: 10.1007/s10587-016-0287-5

[1] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439 (2013), 21-33. | MR | Zbl

[2] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics New York, Academic Press (1979). | MR | Zbl

[3] Bozkurt, S. B., Bozkurt, D.: On the signless Laplacian spectral radius of digraphs. Ars Comb. 108 (2013), 193-200. | MR | Zbl

[4] Cao, D.: Bounds on eigenvalues and chromatic numbers. Linear Algebra Appl. 270 (1998), 1-13. | MR | Zbl

[5] Chen, Y.-H., Pan, R.-Y., Zhang, X.-D.: Two sharp upper bounds for the signless Laplacian spectral radius of graphs. Discrete Math. Algorithms Appl. 3 (2011), 185-192. | DOI | MR | Zbl

[6] Cui, S.-Y., Tian, G.-X., Guo, J.-J.: A sharp upper bound on the signless Laplacian spectral radius of graphs. Linear Algebra Appl. 439 (2013), 2442-2447. | MR | Zbl

[7] Das, K. Ch.: A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs. Linear Algebra Appl. 376 (2004), 173-186. | MR | Zbl

[8] Das, K. Ch., Kumar, P.: Some new bounds on the spectral radius of graphs. Discrete Math. 281 (2004), 149-161. | DOI | MR | Zbl

[9] Fiedler, M.: A geometric approach to the Laplacian matrix of a graph. Combinatorial and Graph-Theoretical Problems in Linear Algebra R. A. Brualdi 73-98 Proc. Conf. Minnesota 1991. IMA Vol. Math. Appl. 50 Springer, New York (1993). | MR | Zbl

[10] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | Zbl

[11] Guo, J.-M.: A new upper bound for the Laplacian spectral radius of graphs. Linear Algebra Appl. 400 (2005), 61-66. | DOI | MR | Zbl

[12] Guo, J.-M., Li, J., Shiu, W. C.: A note on the upper bounds for the Laplacian spectral radius of graphs. Linear Algebra Appl. 439 (2013), 1657-1661. | MR | Zbl

[13] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | MR | Zbl

[14] Li, J.-S., Pan, Y.-L.: Upper bound for the Laplacian graph eigenvalues. Acta Math. Sin., Engl. Ser. 20 (2004), 803-806. | DOI | MR | Zbl

[15] Li, J.-S., Pan, Y.-L.: de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph. Linear Algebra Appl. 328 (2001), 153-160. | MR | Zbl

[16] Li, J.-S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph. Linear Algebra Appl. 285 (1998), 305-307. | MR | Zbl

[17] Oliveira, C. S., Lima, L. S. de, Abreu, N. M. M. de, Hansen, P.: Bounds on the index of the signless Laplacian of a graph. Discrete Appl. Math. 158 (2010), 355-360. | DOI | MR | Zbl

[18] Shu, J., Wu, Y.: Sharp upper bounds on the spectral radius of graphs. Linear Algebra Appl. 377 (2004), 241-248. | DOI | MR | Zbl

[19] Zhang, X.-D.: Two sharp upper bounds for the Laplacian eigenvalues. Linear Algebra Appl. 376 (2004), 207-213. | MR | Zbl

[20] Zhang, X.-D., Li, J.-S.: Spectral radius of non-negative matrices and digraphs. Acta Math. Sin., Engl. Ser. 18 (2002), 293-300. | DOI | MR | Zbl

[21] Zhang, X.-D., Luo, R.: The Laplacian eigenvalues of mixed graphs. Linear Algebra Appl. 362 (2003), 109-119. | DOI | MR | Zbl

Cité par Sources :