Keywords: nonnegative matrix; spectral radius; graph; digraph
@article{10_1007_s10587_016_0287_5,
author = {You, Lihua and Shu, Yujie and Zhang, Xiao-Dong},
title = {A sharp upper bound for the spectral radius of a nonnegative matrix and applications},
journal = {Czechoslovak Mathematical Journal},
pages = {701--715},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0287-5},
mrnumber = {3556862},
zbl = {06644028},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0287-5/}
}
TY - JOUR AU - You, Lihua AU - Shu, Yujie AU - Zhang, Xiao-Dong TI - A sharp upper bound for the spectral radius of a nonnegative matrix and applications JO - Czechoslovak Mathematical Journal PY - 2016 SP - 701 EP - 715 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0287-5/ DO - 10.1007/s10587-016-0287-5 LA - en ID - 10_1007_s10587_016_0287_5 ER -
%0 Journal Article %A You, Lihua %A Shu, Yujie %A Zhang, Xiao-Dong %T A sharp upper bound for the spectral radius of a nonnegative matrix and applications %J Czechoslovak Mathematical Journal %D 2016 %P 701-715 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0287-5/ %R 10.1007/s10587-016-0287-5 %G en %F 10_1007_s10587_016_0287_5
You, Lihua; Shu, Yujie; Zhang, Xiao-Dong. A sharp upper bound for the spectral radius of a nonnegative matrix and applications. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 701-715. doi: 10.1007/s10587-016-0287-5
[1] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439 (2013), 21-33. | MR | Zbl
[2] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics New York, Academic Press (1979). | MR | Zbl
[3] Bozkurt, S. B., Bozkurt, D.: On the signless Laplacian spectral radius of digraphs. Ars Comb. 108 (2013), 193-200. | MR | Zbl
[4] Cao, D.: Bounds on eigenvalues and chromatic numbers. Linear Algebra Appl. 270 (1998), 1-13. | MR | Zbl
[5] Chen, Y.-H., Pan, R.-Y., Zhang, X.-D.: Two sharp upper bounds for the signless Laplacian spectral radius of graphs. Discrete Math. Algorithms Appl. 3 (2011), 185-192. | DOI | MR | Zbl
[6] Cui, S.-Y., Tian, G.-X., Guo, J.-J.: A sharp upper bound on the signless Laplacian spectral radius of graphs. Linear Algebra Appl. 439 (2013), 2442-2447. | MR | Zbl
[7] Das, K. Ch.: A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs. Linear Algebra Appl. 376 (2004), 173-186. | MR | Zbl
[8] Das, K. Ch., Kumar, P.: Some new bounds on the spectral radius of graphs. Discrete Math. 281 (2004), 149-161. | DOI | MR | Zbl
[9] Fiedler, M.: A geometric approach to the Laplacian matrix of a graph. Combinatorial and Graph-Theoretical Problems in Linear Algebra R. A. Brualdi 73-98 Proc. Conf. Minnesota 1991. IMA Vol. Math. Appl. 50 Springer, New York (1993). | MR | Zbl
[10] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | Zbl
[11] Guo, J.-M.: A new upper bound for the Laplacian spectral radius of graphs. Linear Algebra Appl. 400 (2005), 61-66. | DOI | MR | Zbl
[12] Guo, J.-M., Li, J., Shiu, W. C.: A note on the upper bounds for the Laplacian spectral radius of graphs. Linear Algebra Appl. 439 (2013), 1657-1661. | MR | Zbl
[13] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). | MR | Zbl
[14] Li, J.-S., Pan, Y.-L.: Upper bound for the Laplacian graph eigenvalues. Acta Math. Sin., Engl. Ser. 20 (2004), 803-806. | DOI | MR | Zbl
[15] Li, J.-S., Pan, Y.-L.: de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph. Linear Algebra Appl. 328 (2001), 153-160. | MR | Zbl
[16] Li, J.-S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph. Linear Algebra Appl. 285 (1998), 305-307. | MR | Zbl
[17] Oliveira, C. S., Lima, L. S. de, Abreu, N. M. M. de, Hansen, P.: Bounds on the index of the signless Laplacian of a graph. Discrete Appl. Math. 158 (2010), 355-360. | DOI | MR | Zbl
[18] Shu, J., Wu, Y.: Sharp upper bounds on the spectral radius of graphs. Linear Algebra Appl. 377 (2004), 241-248. | DOI | MR | Zbl
[19] Zhang, X.-D.: Two sharp upper bounds for the Laplacian eigenvalues. Linear Algebra Appl. 376 (2004), 207-213. | MR | Zbl
[20] Zhang, X.-D., Li, J.-S.: Spectral radius of non-negative matrices and digraphs. Acta Math. Sin., Engl. Ser. 18 (2002), 293-300. | DOI | MR | Zbl
[21] Zhang, X.-D., Luo, R.: The Laplacian eigenvalues of mixed graphs. Linear Algebra Appl. 362 (2003), 109-119. | DOI | MR | Zbl
Cité par Sources :