$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\leq r \leq n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$ $(i=1, \dots , r)$ and $(i,i-r+1)$ $(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\geq 3$ and $n \geq 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary.
DOI :
10.1007/s10587-016-0285-7
Classification :
05C50, 15A18
Keywords: sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
Keywords: sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
@article{10_1007_s10587_016_0285_7,
author = {Shao, Yanling and Gao, Yubin and Gao, Wei},
title = {$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$},
journal = {Czechoslovak Mathematical Journal},
pages = {671--679},
publisher = {mathdoc},
volume = {66},
number = {3},
year = {2016},
doi = {10.1007/s10587-016-0285-7},
mrnumber = {3556860},
zbl = {06644026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/}
}
TY - JOUR
AU - Shao, Yanling
AU - Gao, Yubin
AU - Gao, Wei
TI - $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
JO - Czechoslovak Mathematical Journal
PY - 2016
SP - 671
EP - 679
VL - 66
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
DO - 10.1007/s10587-016-0285-7
LA - en
ID - 10_1007_s10587_016_0285_7
ER -
%0 Journal Article
%A Shao, Yanling
%A Gao, Yubin
%A Gao, Wei
%T $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
%J Czechoslovak Mathematical Journal
%D 2016
%P 671-679
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
%R 10.1007/s10587-016-0285-7
%G en
%F 10_1007_s10587_016_0285_7
Shao, Yanling; Gao, Yubin; Gao, Wei. $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679. doi: 10.1007/s10587-016-0285-7
Cité par Sources :