Keywords: sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
@article{10_1007_s10587_016_0285_7,
author = {Shao, Yanling and Gao, Yubin and Gao, Wei},
title = {$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$},
journal = {Czechoslovak Mathematical Journal},
pages = {671--679},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0285-7},
mrnumber = {3556860},
zbl = {06644026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/}
}
TY - JOUR
AU - Shao, Yanling
AU - Gao, Yubin
AU - Gao, Wei
TI - $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
JO - Czechoslovak Mathematical Journal
PY - 2016
SP - 671
EP - 679
VL - 66
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
DO - 10.1007/s10587-016-0285-7
LA - en
ID - 10_1007_s10587_016_0285_7
ER -
%0 Journal Article
%A Shao, Yanling
%A Gao, Yubin
%A Gao, Wei
%T $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
%J Czechoslovak Mathematical Journal
%D 2016
%P 671-679
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
%R 10.1007/s10587-016-0285-7
%G en
%F 10_1007_s10587_016_0285_7
Shao, Yanling; Gao, Yubin; Gao, Wei. $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679. doi: 10.1007/s10587-016-0285-7
[1] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory. Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). | MR | Zbl
[2] Catral, M., Olesky, D. D., Driessche, P. van den: Allow problems concerning spectral properties of sign pattern matrices: a survey. Linear Algebra Appl. 430 (2009), 3080-3094. | MR
[3] Cavers, M. S., Meulen, K. N. Vander: Spectrally and inertially arbitrary sign patterns. Linear Algebra Appl. 394 (2005), 53-72. | MR
[4] Gao, Y., Li, Z., Shao, Y.: A note on spectrally arbitrary sign patterns. JP J. Algebra Number Theory Appl. 11 (2008), 15-35. | MR | Zbl
[5] Garnett, C., Shader, B. L.: A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns. Linear Algebra Appl. 436 (2012), 4451-4458. | MR | Zbl
[6] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (1985). | MR | Zbl
Cité par Sources :