$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\leq r \leq n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$ $(i=1, \dots , r)$ and $(i,i-r+1)$ $(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\geq 3$ and $n \geq 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary.
An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\leq r \leq n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$ $(i=1, \dots , r)$ and $(i,i-r+1)$ $(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\geq 3$ and $n \geq 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary.
DOI : 10.1007/s10587-016-0285-7
Classification : 05C50, 15A18
Keywords: sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
@article{10_1007_s10587_016_0285_7,
     author = {Shao, Yanling and Gao, Yubin and Gao, Wei},
     title = {$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {671--679},
     year = {2016},
     volume = {66},
     number = {3},
     doi = {10.1007/s10587-016-0285-7},
     mrnumber = {3556860},
     zbl = {06644026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/}
}
TY  - JOUR
AU  - Shao, Yanling
AU  - Gao, Yubin
AU  - Gao, Wei
TI  - $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 671
EP  - 679
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
DO  - 10.1007/s10587-016-0285-7
LA  - en
ID  - 10_1007_s10587_016_0285_7
ER  - 
%0 Journal Article
%A Shao, Yanling
%A Gao, Yubin
%A Gao, Wei
%T $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
%J Czechoslovak Mathematical Journal
%D 2016
%P 671-679
%V 66
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
%R 10.1007/s10587-016-0285-7
%G en
%F 10_1007_s10587_016_0285_7
Shao, Yanling; Gao, Yubin; Gao, Wei. $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679. doi: 10.1007/s10587-016-0285-7

[1] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory. Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). | MR | Zbl

[2] Catral, M., Olesky, D. D., Driessche, P. van den: Allow problems concerning spectral properties of sign pattern matrices: a survey. Linear Algebra Appl. 430 (2009), 3080-3094. | MR

[3] Cavers, M. S., Meulen, K. N. Vander: Spectrally and inertially arbitrary sign patterns. Linear Algebra Appl. 394 (2005), 53-72. | MR

[4] Gao, Y., Li, Z., Shao, Y.: A note on spectrally arbitrary sign patterns. JP J. Algebra Number Theory Appl. 11 (2008), 15-35. | MR | Zbl

[5] Garnett, C., Shader, B. L.: A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns. Linear Algebra Appl. 436 (2012), 4451-4458. | MR | Zbl

[6] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (1985). | MR | Zbl

Cité par Sources :