Keywords: G-matrix; $J$-orthogonal matrix; Cauchy matrix; sign pattern matrix
@article{10_1007_s10587_016_0284_8,
author = {Hall, Frank J. and Rozlo\v{z}n{\'\i}k, Miroslav},
title = {G-matrices, $J$-orthogonal matrices, and their sign patterns},
journal = {Czechoslovak Mathematical Journal},
pages = {653--670},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0284-8},
mrnumber = {3556859},
zbl = {06644025},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0284-8/}
}
TY - JOUR AU - Hall, Frank J. AU - Rozložník, Miroslav TI - G-matrices, $J$-orthogonal matrices, and their sign patterns JO - Czechoslovak Mathematical Journal PY - 2016 SP - 653 EP - 670 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0284-8/ DO - 10.1007/s10587-016-0284-8 LA - en ID - 10_1007_s10587_016_0284_8 ER -
%0 Journal Article %A Hall, Frank J. %A Rozložník, Miroslav %T G-matrices, $J$-orthogonal matrices, and their sign patterns %J Czechoslovak Mathematical Journal %D 2016 %P 653-670 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0284-8/ %R 10.1007/s10587-016-0284-8 %G en %F 10_1007_s10587_016_0284_8
Hall, Frank J.; Rozložník, Miroslav. G-matrices, $J$-orthogonal matrices, and their sign patterns. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 653-670. doi: 10.1007/s10587-016-0284-8
[1] Beasley, L. B., Scully, D. J.: Linear operators which preserve combinatorial orthogonality. Linear Algebra Appl. 201 (1994), 171-180. | MR | Zbl
[2] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory. Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). | MR | Zbl
[3] Brualdi, R. A., Shader, B. L.: Matrices of Sign-Solvable Linear Systems. Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). | MR | Zbl
[4] Della-Dora, J.: Numerical linear algorithms and group theory. Linear Algebra Appl. 10 (1975), 267-283. | DOI | MR | Zbl
[5] Elsner, L.: On some algebraic problems in connection with general eigenvalue algorithms. Linear Algebra Appl. 26 (1979), 123-138. | DOI | MR | Zbl
[6] Eschenbach, C. A., Hall, F. J., Harrell, D. L., Li, Z.: When does the inverse have the same sign pattern as the transpose?. Czech. Math. J. 49 (1999), 255-275. | DOI | MR | Zbl
[7] Fiedler, M.: Notes on Hilbert and Cauchy matrices. Linear Algebra Appl. 432 (2010), 351-356. | MR | Zbl
[8] Fiedler, M.: Theory of Graphs and Its Applications. Proc. Symp., Smolenice, 1963 Publishing House of the Czechoslovak Academy of Sciences Praha (1964). | MR
[9] Fiedler, M., Hall, F. J.: G-matrices. Linear Algebra Appl. 436 (2012), 731-741. | MR | Zbl
[10] Fiedler, M., Markham, T. L.: More on G-matrices. Linear Algebra Appl. 438 (2013), 231-241. | MR | Zbl
[11] Hall, F. J., Li, Z.: Sign pattern matrices. Handbook of Linear Algebra Chapman and Hall/CRC Press Boca Raton (2013).
[12] Higham, N. J.: $J$-orthogonal matrices: properties and generation. SIAM Rev. 45 (2003), 504-519. | DOI | MR | Zbl
[13] Rozložník, M., Okulicka-Dłużewska, F., Smoktunowicz, A.: Cholesky-like factorization of symmetric indefinite matrices and orthogonalization with respect to bilinear forms. SIAM J. Matrix Anal. Appl. 36 (2015), 727-751. | DOI | MR | Zbl
[14] Waters, C.: Sign patterns that allow orthogonality. Linear Algebra Appl. 235 (1996), 1-13. | DOI | MR
Cité par Sources :