Keywords: determinantal representation; hyperbolic form; Riemann theta function; numerical range
@article{10_1007_s10587_016_0283_9,
author = {Chien, Mao-Ting and Nakazato, Hiroshi},
title = {Computing the determinantal representations of hyperbolic forms},
journal = {Czechoslovak Mathematical Journal},
pages = {633--651},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0283-9},
mrnumber = {3556858},
zbl = {06644024},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0283-9/}
}
TY - JOUR AU - Chien, Mao-Ting AU - Nakazato, Hiroshi TI - Computing the determinantal representations of hyperbolic forms JO - Czechoslovak Mathematical Journal PY - 2016 SP - 633 EP - 651 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0283-9/ DO - 10.1007/s10587-016-0283-9 LA - en ID - 10_1007_s10587_016_0283_9 ER -
%0 Journal Article %A Chien, Mao-Ting %A Nakazato, Hiroshi %T Computing the determinantal representations of hyperbolic forms %J Czechoslovak Mathematical Journal %D 2016 %P 633-651 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0283-9/ %R 10.1007/s10587-016-0283-9 %G en %F 10_1007_s10587_016_0283_9
Chien, Mao-Ting; Nakazato, Hiroshi. Computing the determinantal representations of hyperbolic forms. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 633-651. doi: 10.1007/s10587-016-0283-9
[1] Chien, M. T., Nakazato, H.: Elliptic modular invariants and numerical ranges. Linear Multilinear Algebra 63 (2015), 1501-1519. | DOI | MR | Zbl
[2] Chien, M. T., Nakazato, H.: Determinantal representation of trigonometric polynomial curves via Sylvester method. Banach J. Math. Anal. 8 (2014), 269-278. | DOI | MR | Zbl
[3] Chien, M. T., Nakazato, H.: Singular points of cyclic weighted shift matrices. Linear Algebra Appl. 439 (2013), 4090-4100. | MR | Zbl
[4] Chien, M. T., Nakazato, H.: Reduction of the $c$-numerical range to the classical numerical range. Linear Algebra Appl. 434 (2011), 615-624. | MR | Zbl
[5] Deconinck, B., Heil, M., Bobenko, A., Hoeij, M. van, Schmies, M.: Computing Riemann theta functions. Math. Comput. 73 (2004), 1417-1442. | DOI | MR
[6] Deconinck, B., Hoeji, M. van: Computing Riemann matrices of algebraic curves. Physica D 152-153 (2001), 28-46. | MR
[7] Fiedler, M.: Pencils of real symmetric matrices and real algebraic curves. Linear Algebra Appl. 141 (1990), 53-60. | MR | Zbl
[8] Fiedler, M.: Geometry of the numerical range of matrices. Linear Algebra Appl. 37 (1981), 81-96. | DOI | MR | Zbl
[9] Helton, J. W., Spitkovsky, I. M.: The possible shapes of numerical ranges. Oper. Matrices 6 (2012), 607-611. | DOI | MR | Zbl
[10] Helton, J. W., Vinnikov, V.: Linear matrix inequality representations of sets. Commun. Pure Appl. Math. 60 (2007), 654-674. | DOI | MR
[11] Hurwitz, A., Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Grundlehren der mathematischen Wissenschaften. Band 3 Springer, Berlin German (1964). | MR | Zbl
[12] Kippenhahn, R.: Über den Wertevorrat einer Matrix. German Math. Nachr. 6 (1951), 193-228. | DOI | MR | Zbl
[13] Lax, P. D.: Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 11 (1958), 175-194. | MR | Zbl
[14] Namba, M.: Geometry of Projective Algebraic Curves. Pure and Applied Mathematics 88 Marcel Dekker, New York (1984). | MR | Zbl
[15] Plaumann, D., Sturmfels, B., Vinzant, C.: Computing linear matrix representations of Helton-Vinnikov curves. H. Dym et al. Mathematical Methods in Systems, Optimization, and Control Festschrift in honor of J. William Helton. Operator Theory: Advances and Applications 222 Birkhäuser, Basel 259-277 (2012). | MR | Zbl
[16] Walker, R. J.: Algebraic Curves. Princeton Mathematical Series 13 Princeton University Press, Princeton (1950). | MR | Zbl
[17] Wang, Z. X., Guo, D. R.: Special Functions. World Scientific Publishing, Teaneck (1989). | MR | Zbl
[18] Wolfram, S.: The Mathematica Book. Wolfram Media, Cambridge University Press, Cambridge (1996). | MR | Zbl
Cité par Sources :