Keywords: sign semipositivity; semipositive matrix; M-matrix; spectrum; equivalence
@article{10_1007_s10587_016_0282_x,
author = {Dorsey, Jonathan and Gannon, Tom and Johnson, Charles R. and Turnansky, Morrison},
title = {New results about semi-positive matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {621--632},
year = {2016},
volume = {66},
number = {3},
doi = {10.1007/s10587-016-0282-x},
mrnumber = {3556857},
zbl = {06644023},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0282-x/}
}
TY - JOUR AU - Dorsey, Jonathan AU - Gannon, Tom AU - Johnson, Charles R. AU - Turnansky, Morrison TI - New results about semi-positive matrices JO - Czechoslovak Mathematical Journal PY - 2016 SP - 621 EP - 632 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0282-x/ DO - 10.1007/s10587-016-0282-x LA - en ID - 10_1007_s10587_016_0282_x ER -
%0 Journal Article %A Dorsey, Jonathan %A Gannon, Tom %A Johnson, Charles R. %A Turnansky, Morrison %T New results about semi-positive matrices %J Czechoslovak Mathematical Journal %D 2016 %P 621-632 %V 66 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0282-x/ %R 10.1007/s10587-016-0282-x %G en %F 10_1007_s10587_016_0282_x
Dorsey, Jonathan; Gannon, Tom; Johnson, Charles R.; Turnansky, Morrison. New results about semi-positive matrices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 621-632. doi: 10.1007/s10587-016-0282-x
[1] Berman, A., Neuman, M., Stern, R. J.: Nonnegative Matrices in Dynamic Systems. Pure and Applied Mathematics, A Wiley Interscience Publication John Wiley and Sons, New York (1989). | MR
[2] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia Classics in Applied Mathematics (1994). | MR | Zbl
[3] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics Academic Press, New York (1979). | MR | Zbl
[4] Berman, A., Ward, R. C.: Classes of stable and semipositive matrices. Linear Algebra Appl. 21 (1978), 163-174. | DOI | MR | Zbl
[5] Berman, A., Ward, R. C.: Stability and semipositivity of real matrices. Bull. Am. Math. Soc. 83 (1977), 262-263. | DOI | MR | Zbl
[6] Fiedler, M., Pták, V.: Some generalizations of positive definiteness and monotonicity. Number. Math. 9 163-172 (1966). | DOI | MR | Zbl
[7] Gale, D.: The Theory of Linear Economic Models. McGraw-Hill Book, New York (1960). | MR
[8] Horn, R., Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991). | MR | Zbl
[9] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (1985). | MR | Zbl
[10] Johnson, C. R., Kerr, M. K., Stanford, D. P.: Semipositivity of matrices. Linear Multilinear Algebra 37 (1994), 265-271. | DOI | MR | Zbl
[11] Johnson, C. R., McCuaig, W. D., Stanford, D. P.: Sign patterns that allow minimal semipositivity. Linear Algebra Appl. 223/224 (1995), 363-373. | MR | Zbl
[12] Johnson, C. R., Stanford, D. P.: Qualitative semipositivity. Combinatorial and graph-theoretical problems in linear algebra IMA Vol. Math. Appl. 50 Springer, New York (1993), 99-105. | MR | Zbl
[13] Johnson, C. R., Zheng, T.: Equilibrants, semipositive matrices, calculation and scaling. Linear Algebra Appl. 434 (2011), 1638-1647. | MR | Zbl
[14] Mangasarian, O. L.: Nonlinear Programming. McGraw-Hill Book, New York (1969). | MR | Zbl
[15] Mangasarian, O. L.: Characterizations of real matrices of monotone kind. SIAM Review 10 439-441 (1968). | DOI | MR | Zbl
[16] Vandergraft, J. S.: Applications of partial orderings to the study of positive definiteness, monotonicity, and convergence of iterative methods for linear systems. SIAM J. Numer. Anal. 9 (1972), 97-104. | DOI | MR | Zbl
[17] Werner, H. J.: Characterizations of minimal semipositivity. Linear Multilinear Algebra 37 (1994), 273-278. | DOI | MR | Zbl
Cité par Sources :