Polycyclic groups with automorphisms of order four
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 575-582
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we study the structure of polycyclic groups admitting an automorphism of order four on the basis of Neumann's result, and prove that if $\alpha $ is an automorphism of order four of a polycyclic group $G$ and the map $\varphi \colon G\rightarrow G$ defined by $g^{\varphi }=[g,\alpha ]$ is surjective, then $G$ contains a characteristic subgroup $H$ of finite index such that the second derived subgroup $H''$ is included in the centre of $H$ and $C_{H}(\alpha ^{2})$ is abelian, both $C_{G}(\alpha ^{2})$ and $G/[G,\alpha ^{2}]$ are abelian-by-finite. These results extend recent and classical results in the literature.
In this paper, we study the structure of polycyclic groups admitting an automorphism of order four on the basis of Neumann's result, and prove that if $\alpha $ is an automorphism of order four of a polycyclic group $G$ and the map $\varphi \colon G\rightarrow G$ defined by $g^{\varphi }=[g,\alpha ]$ is surjective, then $G$ contains a characteristic subgroup $H$ of finite index such that the second derived subgroup $H''$ is included in the centre of $H$ and $C_{H}(\alpha ^{2})$ is abelian, both $C_{G}(\alpha ^{2})$ and $G/[G,\alpha ^{2}]$ are abelian-by-finite. These results extend recent and classical results in the literature.
DOI :
10.1007/s10587-016-0276-8
Classification :
20E36
Keywords: polycyclic group; regular automorphism; surjectivity
Keywords: polycyclic group; regular automorphism; surjectivity
@article{10_1007_s10587_016_0276_8,
author = {Xu, Tao and Zhou, Fang and Liu, Heguo},
title = {Polycyclic groups with automorphisms of order four},
journal = {Czechoslovak Mathematical Journal},
pages = {575--582},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0276-8},
mrnumber = {3519622},
zbl = {06604487},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0276-8/}
}
TY - JOUR AU - Xu, Tao AU - Zhou, Fang AU - Liu, Heguo TI - Polycyclic groups with automorphisms of order four JO - Czechoslovak Mathematical Journal PY - 2016 SP - 575 EP - 582 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0276-8/ DO - 10.1007/s10587-016-0276-8 LA - en ID - 10_1007_s10587_016_0276_8 ER -
%0 Journal Article %A Xu, Tao %A Zhou, Fang %A Liu, Heguo %T Polycyclic groups with automorphisms of order four %J Czechoslovak Mathematical Journal %D 2016 %P 575-582 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0276-8/ %R 10.1007/s10587-016-0276-8 %G en %F 10_1007_s10587_016_0276_8
Xu, Tao; Zhou, Fang; Liu, Heguo. Polycyclic groups with automorphisms of order four. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 575-582. doi: 10.1007/s10587-016-0276-8
Cité par Sources :