Keywords: polycyclic group; regular automorphism; surjectivity
@article{10_1007_s10587_016_0276_8,
author = {Xu, Tao and Zhou, Fang and Liu, Heguo},
title = {Polycyclic groups with automorphisms of order four},
journal = {Czechoslovak Mathematical Journal},
pages = {575--582},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0276-8},
mrnumber = {3519622},
zbl = {06604487},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0276-8/}
}
TY - JOUR AU - Xu, Tao AU - Zhou, Fang AU - Liu, Heguo TI - Polycyclic groups with automorphisms of order four JO - Czechoslovak Mathematical Journal PY - 2016 SP - 575 EP - 582 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0276-8/ DO - 10.1007/s10587-016-0276-8 LA - en ID - 10_1007_s10587_016_0276_8 ER -
%0 Journal Article %A Xu, Tao %A Zhou, Fang %A Liu, Heguo %T Polycyclic groups with automorphisms of order four %J Czechoslovak Mathematical Journal %D 2016 %P 575-582 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0276-8/ %R 10.1007/s10587-016-0276-8 %G en %F 10_1007_s10587_016_0276_8
Xu, Tao; Zhou, Fang; Liu, Heguo. Polycyclic groups with automorphisms of order four. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 575-582. doi: 10.1007/s10587-016-0276-8
[1] Burnside, W.: Theory of Groups of Finite Order. Dover Publications New York (1955). | MR | Zbl
[2] Endimioni, G.: On almost regular automorphisms. Arch. Math. 94 (2010), 19-27. | DOI | MR | Zbl
[3] Endimioni, G., Moravec, P.: On the centralizer and the commutator subgroup of an automorphism. Monatsh. Math. 167 (2012), 165-174. | DOI | MR | Zbl
[4] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper and Row, Publishers New York (1968). | MR | Zbl
[5] Higman, G.: Groups and rings having automorphisms without non-trivial fixed elements. J. Lond. Math. Soc. 32 (1957), 321-334. | DOI | MR
[6] Kovács, L. G.: Group with regular automorphisms of order four. Math. Z. 75 (1961), 277-294. | DOI | MR
[7] Lennox, J. C., Robinson, D. J. S.: The Theory of Infinite Soluble Groups. Oxford Science Publications Oxford (2004). | MR | Zbl
[8] Neumann, B. H.: Groups with automorphisms that leave only the neutral element fixed. Arch. Math. 7 (1956), 1-5. | DOI | MR | Zbl
[9] Robinson, D. J. S.: A Course in the Theory of Groups. Springer New York (1996). | MR
[10] Shmel'kin, A. L.: Polycyclic groups. Sib. Math. J. Russian 9 (1968), 234-235. | Zbl
[11] Tao, X., Heguo, L.: Polycyclic groups admitting an automorphism of prime order. Submitted to Ukrainnian Math. J.
[12] Tao, X., Heguo, L.: On regular automorphisms of soluble groups of finite rank. Chin. Ann. Math. A35 (2014), Chinese 543-550, doi 10.3103/S0898511114040036. | DOI | MR | Zbl
[13] Thompson, J. G.: Finite group with fixed-point-free automorphisms of prime order. Proc. Natl. Acad. Sci. 45 (1959), 578-581. | DOI | MR
Cité par Sources :