Torsion units for some almost simple groups
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 561-574 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group $\rm PSL(2,11)$. Additionally we prove that the Prime graph question is true for the automorphism group of the simple group $\rm PSL(2,13)$.
We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group $\rm PSL(2,11)$. Additionally we prove that the Prime graph question is true for the automorphism group of the simple group $\rm PSL(2,13)$.
DOI : 10.1007/s10587-016-0275-9
Classification : 16S34, 16U60, 20C05
Keywords: Zassenhaus conjecture; torsion unit; partial augmentation; integral group ring
@article{10_1007_s10587_016_0275_9,
     author = {Gildea, Joe},
     title = {Torsion units for some almost simple groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {561--574},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0275-9},
     mrnumber = {3519621},
     zbl = {06604486},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0275-9/}
}
TY  - JOUR
AU  - Gildea, Joe
TI  - Torsion units for some almost simple groups
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 561
EP  - 574
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0275-9/
DO  - 10.1007/s10587-016-0275-9
LA  - en
ID  - 10_1007_s10587_016_0275_9
ER  - 
%0 Journal Article
%A Gildea, Joe
%T Torsion units for some almost simple groups
%J Czechoslovak Mathematical Journal
%D 2016
%P 561-574
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0275-9/
%R 10.1007/s10587-016-0275-9
%G en
%F 10_1007_s10587_016_0275_9
Gildea, Joe. Torsion units for some almost simple groups. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 561-574. doi: 10.1007/s10587-016-0275-9

[1] Artamonov, V. A., Bovdi, A. A.: Integral group rings: Groups of units and classical K-theory. J. Sov. Math. 57 (1991), 2931-2958 translation from Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 27 3-43 (1989).

[2] Bächle, A., Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups. ArXiv:1305.7419 [math.RT] (2013). | MR

[3] Bovdi, V., Grishkov, A., Konovalov, A.: Kimmerle conjecture for the Held and O'Nan sporadic simple groups. Sci. Math. Jpn. 69 (2009), 353-362. | MR | Zbl

[4] Bovdi, V., Hertweck, M.: Zassenhaus conjecture for central extensions of {$S_5$}. J. Group Theory 11 (2008), 63-74. | DOI | MR | Zbl

[5] Bovdi, V., Höfert, C., Kimmerle, W.: On the first Zassenhaus conjecture for integral group rings. Publ. Math. 65 (2004), 291-303. | MR | Zbl

[6] Bovdi, V. A., Jespers, E., Konovalov, A. B.: Torsion units in integral group rings of Janko simple groups. Math. Comput. 80 (2011), 593-615. | DOI | MR | Zbl

[7] Bovdi, V., Konovalov, A.: Integral group ring of the Mathieu simple group $M_{24}$. J. Algebra Appl. 11 (2012), Article ID 1250016, 10 pages. | DOI | MR | Zbl

[8] Bovdi, V. A., Konovalov, A. B.: Torsion units in integral group ring of Higman-Sims simple group. Stud. Sci. Math. Hung. 47 (2010), 1-11. | MR | Zbl

[9] Bovdi, V. A., Konovalov, A. B.: Integral group ring of Rudvalis simple group. Ukr. Mat. Zh. 61 (2009), 3-13 and Ukr. Math. J. 61 (2009), 1-13. | DOI | MR | Zbl

[10] Bovdi, V. A., Konovalov, A. B.: Integral group ring of the Mathieu simple group $M_{23}$. Commun. Algebra 36 (2008), 2670-2680. | DOI | MR | Zbl

[11] Bovdi, V., Konovalov, A.: Integral group ring of the first Mathieu simple group. Groups St. Andrews 2005. Vol. I. Selected Papers of the Conference, St. Andrews, 2005 London Math. Soc. Lecture Note Ser. 339 Cambridge University Press, Cambridge (2007), 237-245 C. M. Campbell et al. | MR | Zbl

[12] Bovdi, V. A., Konovalov, A. B.: Integral group ring of the McLaughlin simple group. Algebra Discrete Math. 2007 (2007), 43-53. | MR | Zbl

[13] Bovdi, V. A., Konovalov, A. B., Linton, S.: Torsion units in integral group rings of Conway simple groups. Int. J. Algebra Comput. 21 (2011), 615-634. | DOI | MR | Zbl

[14] Bovdi, V. A., Konovalov, A. B., Linton, S.: Torsion units in integral group ring of the Mathieu simple group $M_{22}$. LMS J. Comput. Math. (electronic only) 11 (2008), 28-39. | DOI | MR | Zbl

[15] Bovdi, V. A., Konovalov, A. B., Marcos, E. D. N.: Integral group ring of the Suzuki sporadic simple group. Publ. Math. 72 (2008), 487-503. | MR | Zbl

[16] Bovdi, A., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA---Lie AlGebras and UNits of group Algebras. (2013), http://www.cs.st-andrews.ac.uk/ {alexk/laguna}.

[17] Bovdi, V. A., Konovalov, A. B., Siciliano, S.: Integral group ring of the Mathieu simple group $M_{12}$. Rend. Circ. Mat. Palermo (2) 56 (2007), 125-136. | DOI | MR | Zbl

[18] Caicedo, M., Margolis, L., Río, Á. del: Zassenhaus conjecture for cyclic-by-abelian groups. J. Lond. Math. Soc., II. Ser. 88 (2013), 65-78. | DOI | MR

[19] Cohn, J. A., Livingstone, D.: On the structure of group algebras. I. Can. J. Math. 17 (1965), 583-593. | DOI | MR | Zbl

[20] Gildea, J.: Zassenhaus conjecture for integral group ring of simple linear groups. J. Algebra Appl. 12 (2013), 1350016, 10 pages. | DOI | MR | Zbl

[21] Hertweck, M.: Zassenhaus conjecture for {$A_6$}. Proc. Indian Acad. Sci., Math. Sci. 118 (2008), 189-195. | DOI | MR | Zbl

[22] Hertweck, M.: Partial augmentations and Brauer character values of torsion units in group rings. (2007). | arXiv

[23] Hertweck, M.: On the torsion units of some integral group rings. Algebra Colloq. 13 (2006), 329-348. | DOI | MR | Zbl

[24] Hertweck, M.: Contributions to the Integral Representation Theory of Groups. Habilitationsschrift, University of Stuttgart (electronic publication) Stuttgart (2004), http://elib.uni-stuttgart.de/opus/volltexte/2004/1638

[25] Hertweck, M., Höfert, C. R., Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the group {$ PSL(2,q)$}. J. Group Theory 12 (2009), 873-882. | DOI | MR

[26] Höfert, C., Kimmerle, W.: On torsion units of integral group rings of groups of small order. Groups, Rings and Group Rings. Proc. of the Conf., Ubatuba, 2004 Lect. Notes Pure Appl. Math. 248 Chapman & Hall/CRC, Boca Raton (2006), A. Giambruno et al. 243-252. | MR | Zbl

[27] Jespers, E., Kimmerle, W., Marciniak, Z., (eds.), G. Nebe: Mini-Workshop: Arithmetic of group rings. German Oberwolfach Rep. 4 (2007), 3209-3240. | MR | Zbl

[28] Kimmerle, W.: On the prime graph of the unit group of integral group rings of finite groups. Groups, Rings and Algebras Contemp. Math. 420 American Mathematical Society (AMS), Providence (2006), 215-228 W. Chin et al. | DOI | MR | Zbl

[29] Luthar, I. S., Passi, I. B. S.: Zassenhaus conjecture for $A_5$. Proc. Indian Acad. Sci., Math. Sci. 99 (1989), 1-5. | DOI | MR | Zbl

[30] Luthar, I. S., Trama, P.: Zassenhaus conjecture for {$S_5$}. Commun. Algebra 19 (1991), 2353-2362. | DOI | MR

[31] Roggenkamp, K., Scott, L.: Isomorphisms of p-adic group rings. Ann. Math. (2) 126 (1987), 593-647. | MR | Zbl

[32] Salim, M. A.: The prime graph conjecture for integral group rings of some alternating groups. Int. J. Group Theory 2 (2013), 175-185. | MR | Zbl

[33] Salim, M. A. M.: Kimmerle's conjecture for integral group rings of some alternating groups. Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 9-22. | MR | Zbl

[34] Salim, M. A. M.: Torsion units in the integral group ring of the alternating group of degree 6. Commun. Algebra 35 (2007), 4198-4204. | DOI | MR | Zbl

[35] The GAP Group: GAP-Groups, Algorithms and Programming. Version 4.4, 2006, http:/www.gap-system.org

[36] Weiss, A.: Rigidity of {$p$}-adic {$p$}-torsion. Ann. Math. (2) 127 (1988), 317-332. | MR | Zbl

[37] Zassenhaus, H.: On the torsion units of finite group rings. Studies in mathematics Lisbon (1974), 119-126. | MR | Zbl

Cité par Sources :