Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 547-559
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre.
In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre.
DOI : 10.1007/s10587-016-0274-x
Classification : 53C30, 53C42
Keywords: hypersurface; totally geodesic hypersurface; parallel geodesic hypersurfaces; two-step homogeneous nilmanifold
@article{10_1007_s10587_016_0274_x,
     author = {Nasehi, Mehri},
     title = {Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {547--559},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0274-x},
     mrnumber = {3519620},
     zbl = {06604485},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0274-x/}
}
TY  - JOUR
AU  - Nasehi, Mehri
TI  - Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 547
EP  - 559
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0274-x/
DO  - 10.1007/s10587-016-0274-x
LA  - en
ID  - 10_1007_s10587_016_0274_x
ER  - 
%0 Journal Article
%A Nasehi, Mehri
%T Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds
%J Czechoslovak Mathematical Journal
%D 2016
%P 547-559
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0274-x/
%R 10.1007/s10587-016-0274-x
%G en
%F 10_1007_s10587_016_0274_x
Nasehi, Mehri. Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 547-559. doi: 10.1007/s10587-016-0274-x

[1] Aghasi, M., Nasehi, M.: On homogeneous Randers spaces with Douglas or naturally reductive metrics. Differ. Geom. Dyn. Syst. 17 (2015), 1-12. | MR | Zbl

[2] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups. Adv. Geom. 15 507-517 (2015). | DOI | MR | Zbl

[3] Aghasi, M., Nasehi, M.: Some geometrical properties of a five-dimensional solvable Lie group. Differ. Geom. Dyn. Syst. 15 (2013), 1-12. | MR | Zbl

[4] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. PDEs, Submanifolds and Affine Differential Geometry, Warszawa, 2000 Polish Academy of Sciences, Inst. Math., Warszawa Banach Cent. Publ. 57 (2002), 67-87 B. Opozda, et al. | MR | Zbl

[5] Božek, M.: Existence of generalized symmetric Riemannian spaces with solvable isometry group. Čas. Pěst. Mat. 105 (1980), 368-384. | MR | Zbl

[6] Calvaruso, G., Kowalski, O., Marinosci, R. A.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungar. 101 (2003), 313-322. | DOI | MR | Zbl

[7] Calvaruso, G., Veken, J. Van der: Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups. Results Math. 64 (2013), 135-153. | DOI | MR

[8] Calvaruso, G., Veken, J. Van der: Parallel surfaces in three-dimensional Lorentzian Lie groups. Taiwanese J. Math. 14 (2010), 223-250. | DOI | MR

[9] Calvaruso, G., Veken, J. Van der: Lorentzian symmetric three-spaces and the classification of their parallel surfaces. Int. J. Math. 20 (2009), 1185-1205. | DOI | MR

[10] Chen, B.-Y.: Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension. J. Geom. Phys. 60 (2010), 260-280. | DOI | MR | Zbl

[11] Chen, B.-Y., Veken, J. Van der: Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms. Tohoku Math. J. 61 (2009), 1-40. | DOI | MR

[12] Leo, B. De, Veken, J. Van der: Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces. Geom. Dedicata 159 (2012), 373-387. | DOI | MR

[13] Homolya, S., Kowalski, O.: Simply connected two-step homogeneous nilmanifolds of dimension 5. Note Mat. 26 (2006), 69-77. | MR | Zbl

[14] Inoguchi, J., Veken, J. Van der: A complete classification of parallel surfaces in three-dimensional homogeneous spaces. Geom. Dedicata 131 (2008), 159-172. | DOI | MR

[15] Inoguchi, J., Veken, J. Van der: Parallel surfaces in the motion groups $E(1,1)$ and $E(2)$. Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 321-332. | DOI | MR

[16] Kowalski, O.: Generalized Symmetric Spaces. Lecture Notes in Mathematics 805 Springer, Berlin (1980). | MR | Zbl

[17] Lauret, J.: Homogeneous nilmanifolds of dimension 3 and 4. Geom. Dedicata 68 (1997), 145-155. | DOI | MR

[18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. (2) 89 (1969), 187-197. | DOI | MR | Zbl

[19] Moghaddam, H. R. Salimi: On the Randers metrics on two-step homogeneous nilmanifolds of dimension five. Int. J. Geom. Methods Mod. Phys. 8 (2011), 501-510. | DOI | MR

[20] Simon, U., Weinstein, A.: Anwendungen der De Rhamschen Zerlegung auf Probleme der lokalen Flächentheorie. Manuscr. Math. 1 (1969), 139-146 German. | DOI | MR | Zbl

Cité par Sources :