Keywords: hypersurface; totally geodesic hypersurface; parallel geodesic hypersurfaces; two-step homogeneous nilmanifold
@article{10_1007_s10587_016_0274_x,
author = {Nasehi, Mehri},
title = {Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {547--559},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0274-x},
mrnumber = {3519620},
zbl = {06604485},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0274-x/}
}
TY - JOUR AU - Nasehi, Mehri TI - Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds JO - Czechoslovak Mathematical Journal PY - 2016 SP - 547 EP - 559 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0274-x/ DO - 10.1007/s10587-016-0274-x LA - en ID - 10_1007_s10587_016_0274_x ER -
%0 Journal Article %A Nasehi, Mehri %T Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds %J Czechoslovak Mathematical Journal %D 2016 %P 547-559 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0274-x/ %R 10.1007/s10587-016-0274-x %G en %F 10_1007_s10587_016_0274_x
Nasehi, Mehri. Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 547-559. doi: 10.1007/s10587-016-0274-x
[1] Aghasi, M., Nasehi, M.: On homogeneous Randers spaces with Douglas or naturally reductive metrics. Differ. Geom. Dyn. Syst. 17 (2015), 1-12. | MR | Zbl
[2] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups. Adv. Geom. 15 507-517 (2015). | DOI | MR | Zbl
[3] Aghasi, M., Nasehi, M.: Some geometrical properties of a five-dimensional solvable Lie group. Differ. Geom. Dyn. Syst. 15 (2013), 1-12. | MR | Zbl
[4] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. PDEs, Submanifolds and Affine Differential Geometry, Warszawa, 2000 Polish Academy of Sciences, Inst. Math., Warszawa Banach Cent. Publ. 57 (2002), 67-87 B. Opozda, et al. | MR | Zbl
[5] Božek, M.: Existence of generalized symmetric Riemannian spaces with solvable isometry group. Čas. Pěst. Mat. 105 (1980), 368-384. | MR | Zbl
[6] Calvaruso, G., Kowalski, O., Marinosci, R. A.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungar. 101 (2003), 313-322. | DOI | MR | Zbl
[7] Calvaruso, G., Veken, J. Van der: Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups. Results Math. 64 (2013), 135-153. | DOI | MR
[8] Calvaruso, G., Veken, J. Van der: Parallel surfaces in three-dimensional Lorentzian Lie groups. Taiwanese J. Math. 14 (2010), 223-250. | DOI | MR
[9] Calvaruso, G., Veken, J. Van der: Lorentzian symmetric three-spaces and the classification of their parallel surfaces. Int. J. Math. 20 (2009), 1185-1205. | DOI | MR
[10] Chen, B.-Y.: Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension. J. Geom. Phys. 60 (2010), 260-280. | DOI | MR | Zbl
[11] Chen, B.-Y., Veken, J. Van der: Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms. Tohoku Math. J. 61 (2009), 1-40. | DOI | MR
[12] Leo, B. De, Veken, J. Van der: Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces. Geom. Dedicata 159 (2012), 373-387. | DOI | MR
[13] Homolya, S., Kowalski, O.: Simply connected two-step homogeneous nilmanifolds of dimension 5. Note Mat. 26 (2006), 69-77. | MR | Zbl
[14] Inoguchi, J., Veken, J. Van der: A complete classification of parallel surfaces in three-dimensional homogeneous spaces. Geom. Dedicata 131 (2008), 159-172. | DOI | MR
[15] Inoguchi, J., Veken, J. Van der: Parallel surfaces in the motion groups $E(1,1)$ and $E(2)$. Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 321-332. | DOI | MR
[16] Kowalski, O.: Generalized Symmetric Spaces. Lecture Notes in Mathematics 805 Springer, Berlin (1980). | MR | Zbl
[17] Lauret, J.: Homogeneous nilmanifolds of dimension 3 and 4. Geom. Dedicata 68 (1997), 145-155. | DOI | MR
[18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. (2) 89 (1969), 187-197. | DOI | MR | Zbl
[19] Moghaddam, H. R. Salimi: On the Randers metrics on two-step homogeneous nilmanifolds of dimension five. Int. J. Geom. Methods Mod. Phys. 8 (2011), 501-510. | DOI | MR
[20] Simon, U., Weinstein, A.: Anwendungen der De Rhamschen Zerlegung auf Probleme der lokalen Flächentheorie. Manuscr. Math. 1 (1969), 139-146 German. | DOI | MR | Zbl
Cité par Sources :