Keywords: embedding theorem; minimal domain; pseudoconvex domain; Bergman-type space
@article{10_1007_s10587_016_0273_y,
author = {Shamoyan, Romi F. and Mihi\'c, Olivera R.},
title = {On some new sharp embedding theorems in minimal and pseudoconvex domains},
journal = {Czechoslovak Mathematical Journal},
pages = {527--546},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0273-y},
mrnumber = {3519619},
zbl = {06604484},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0273-y/}
}
TY - JOUR AU - Shamoyan, Romi F. AU - Mihić, Olivera R. TI - On some new sharp embedding theorems in minimal and pseudoconvex domains JO - Czechoslovak Mathematical Journal PY - 2016 SP - 527 EP - 546 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0273-y/ DO - 10.1007/s10587-016-0273-y LA - en ID - 10_1007_s10587_016_0273_y ER -
%0 Journal Article %A Shamoyan, Romi F. %A Mihić, Olivera R. %T On some new sharp embedding theorems in minimal and pseudoconvex domains %J Czechoslovak Mathematical Journal %D 2016 %P 527-546 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0273-y/ %R 10.1007/s10587-016-0273-y %G en %F 10_1007_s10587_016_0273_y
Shamoyan, Romi F.; Mihić, Olivera R. On some new sharp embedding theorems in minimal and pseudoconvex domains. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 527-546. doi: 10.1007/s10587-016-0273-y
[1] Abate, M., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263 (2012), 3449-3491. | DOI | MR | Zbl
[2] Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc., Ser. (2) 83 (2011), 587-605. | DOI | MR | Zbl
[3] Arsenović, M., Shamoyan, R. F.: On distance estimates and atomic decompositions in spaces of analytic functions on strictly pseudoconvex domains. Bull. Korean Math. Soc. 52 (2015), 85-103. | DOI | MR | Zbl
[4] F. Beatrous, Jr.: $L^p$-estimates for extensions of holomorphic functions. Mich. Math. J. 32 (1985), 361-380. | DOI | MR
[5] Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. (2) 76 (1962), 547-559. | DOI | MR | Zbl
[6] Cima, J. A., Mercer, P. R.: Composition operators between Bergman spaces on convex domains in $\mathbb C^n$. J. Oper. Theory 33 (1995), 363-369. | MR
[7] Cima, J. A., Wogen, W. R.: A Carleson measure theorem for the Bergman space on the ball. J. Oper. Theory 7 (1982), 157-163. | MR | Zbl
[8] Cohn, W. S.: Tangential characterizations of BMOA on strictly pseudoconvex domains. Math. Scand. 73 (1993), 259-273. | DOI | MR | Zbl
[9] Djrbashian, A. E., Shamoyan, F. A.: Topics in the Theory of $A^p_\alpha$ Spaces. Teubner-Texte zur Mathematik 105 Teubner, Leipzig (1988). | MR
[10] Engliš, M., Hänninen, T. T., Taskinen, J.: Minimal $L^\infty$-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous. Houston J. Math. 32 (2006), 253-275. | MR | Zbl
[11] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237-241. | DOI | MR | Zbl
[12] Jimbo, T., Sakai, A.: Interpolation manifolds for products of strictly pseudoconvex domains. Complex Variables, Theory Appl. 8 (1987), 333-341. | DOI | MR | Zbl
[13] Kobayashi, S.: Hyperbolic Complex Spaces. Grundlehren der Mathematischen Wissenschaften 318 Springer, Berlin (1998). | DOI | MR | Zbl
[14] Krantz, S. G.: Function Theory of Several Complex Variables. Pure and Applied Mathematics A Wiley-Interscience Publication. John Wiley & Sons, New York (1982). | MR | Zbl
[15] Li, H.: BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains. J. Funct. Anal. 106 (1992), 375-408. | DOI | MR | Zbl
[16] Li, S.-Y., Luo, W.: Analysis on Besov spaces I\kern-1ptI: Embedding and duality theorems. J. Math. Anal. Appl. 333 (2007), 1189-1202. | DOI | MR
[17] Li, S., Shamoyan, R.: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball. Bull. Sci. Math. 134 (2010), 144-154. | DOI | MR | Zbl
[18] Li, S., Shamoyan, R.: On some properties of analytic spaces connected with Bergman metric ball. Bull. Iran. Math. Soc. 34 (2008), 121-139. | MR | Zbl
[19] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656-660. | DOI | MR | Zbl
[20] McNeal, J. D., Stein, E. M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73 (1994), 177-199. | MR | Zbl
[21] Oleinik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. | DOI | Zbl
[22] Oleinik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 2 (1974), 135-142. | DOI | MR
[23] Ortega, J. M., Fàbrega, J.: Mixed-norm spaces and interpolation. Stud. Math. 109 (1994), 233-254. | MR | Zbl
[24] Range, R. M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics 108 Springer, New York (1986). | DOI | MR | Zbl
[25] Shamoyan, R. F., Kurilenko, S. M., Sergey, M.: On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space. Journal of Siberian Federal University 7 (2014), 383-388.
[26] Shamoyan, R. F., Mihić, O. R.: On distance function in some new analytic Bergman type spaces in $\Bbb C^n$. J. Funct. Spaces (2014), Article ID 275416, 10 pages. | MR
[27] Shamoyan, R. F., Mihić, O. R.: On new estimates for distances in analytic function spaces in higher dimension. Sib. Èlektron. Mat. Izv. (electronic only) 6 (2009), 514-517. | MR | Zbl
[28] Shamoyan, R. F., Mihić, O. R.: On some properties of holomorphic spaces based on Bergman metric ball and Luzin area operator. J. Nonlinear Sci. Appl. 2 (2009), 183-194. | DOI | MR | Zbl
[29] Shamoyan, R., Povprits, E.: Sharp theorems on traces in analytic spaces in tube domains over symmetric cones. Journal of Siberian Federal University 6 (2013), 527-538. | MR
[30] Shamoyan, R. F., Povprits, E. V.: Multifunctional analytic spaces on products of bounded strictly pseudoconvex domains and embedding theorems. Kragujevac J. Math. 37 (2013), 221-244. | MR
[31] Shamoyan, R., Radnia, M.: On some new embedding theorems for some analytic classes in the unit ball. J. Nonlinear Sci. Appl. 2 (2009), 243-250. | DOI | MR | Zbl
[32] Yamaji, S.: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain. Hiroshima Math. J. 43 (2013), 107-127. | DOI | MR | Zbl
[33] Yamaji, S.: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain. J. Math. Soc. Japan 65 (2013), 1101-1115. | DOI | MR | Zbl
[34] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl
Cité par Sources :