On some new sharp embedding theorems in minimal and pseudoconvex domains
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 527-546 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in $\mathbb {C}^{n}.$ Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the $r$-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones.
We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in $\mathbb {C}^{n}.$ Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the $r$-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones.
DOI : 10.1007/s10587-016-0273-y
Classification : 42B15, 42B30
Keywords: embedding theorem; minimal domain; pseudoconvex domain; Bergman-type space
@article{10_1007_s10587_016_0273_y,
     author = {Shamoyan, Romi F. and Mihi\'c, Olivera R.},
     title = {On some new sharp embedding theorems in minimal and pseudoconvex domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {527--546},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0273-y},
     mrnumber = {3519619},
     zbl = {06604484},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0273-y/}
}
TY  - JOUR
AU  - Shamoyan, Romi F.
AU  - Mihić, Olivera R.
TI  - On some new sharp embedding theorems in minimal and pseudoconvex domains
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 527
EP  - 546
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0273-y/
DO  - 10.1007/s10587-016-0273-y
LA  - en
ID  - 10_1007_s10587_016_0273_y
ER  - 
%0 Journal Article
%A Shamoyan, Romi F.
%A Mihić, Olivera R.
%T On some new sharp embedding theorems in minimal and pseudoconvex domains
%J Czechoslovak Mathematical Journal
%D 2016
%P 527-546
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0273-y/
%R 10.1007/s10587-016-0273-y
%G en
%F 10_1007_s10587_016_0273_y
Shamoyan, Romi F.; Mihić, Olivera R. On some new sharp embedding theorems in minimal and pseudoconvex domains. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 527-546. doi: 10.1007/s10587-016-0273-y

[1] Abate, M., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263 (2012), 3449-3491. | DOI | MR | Zbl

[2] Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc., Ser. (2) 83 (2011), 587-605. | DOI | MR | Zbl

[3] Arsenović, M., Shamoyan, R. F.: On distance estimates and atomic decompositions in spaces of analytic functions on strictly pseudoconvex domains. Bull. Korean Math. Soc. 52 (2015), 85-103. | DOI | MR | Zbl

[4] F. Beatrous, Jr.: $L^p$-estimates for extensions of holomorphic functions. Mich. Math. J. 32 (1985), 361-380. | DOI | MR

[5] Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. (2) 76 (1962), 547-559. | DOI | MR | Zbl

[6] Cima, J. A., Mercer, P. R.: Composition operators between Bergman spaces on convex domains in $\mathbb C^n$. J. Oper. Theory 33 (1995), 363-369. | MR

[7] Cima, J. A., Wogen, W. R.: A Carleson measure theorem for the Bergman space on the ball. J. Oper. Theory 7 (1982), 157-163. | MR | Zbl

[8] Cohn, W. S.: Tangential characterizations of BMOA on strictly pseudoconvex domains. Math. Scand. 73 (1993), 259-273. | DOI | MR | Zbl

[9] Djrbashian, A. E., Shamoyan, F. A.: Topics in the Theory of $A^p_\alpha$ Spaces. Teubner-Texte zur Mathematik 105 Teubner, Leipzig (1988). | MR

[10] Engliš, M., Hänninen, T. T., Taskinen, J.: Minimal $L^\infty$-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous. Houston J. Math. 32 (2006), 253-275. | MR | Zbl

[11] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237-241. | DOI | MR | Zbl

[12] Jimbo, T., Sakai, A.: Interpolation manifolds for products of strictly pseudoconvex domains. Complex Variables, Theory Appl. 8 (1987), 333-341. | DOI | MR | Zbl

[13] Kobayashi, S.: Hyperbolic Complex Spaces. Grundlehren der Mathematischen Wissenschaften 318 Springer, Berlin (1998). | DOI | MR | Zbl

[14] Krantz, S. G.: Function Theory of Several Complex Variables. Pure and Applied Mathematics A Wiley-Interscience Publication. John Wiley & Sons, New York (1982). | MR | Zbl

[15] Li, H.: BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains. J. Funct. Anal. 106 (1992), 375-408. | DOI | MR | Zbl

[16] Li, S.-Y., Luo, W.: Analysis on Besov spaces I\kern-1ptI: Embedding and duality theorems. J. Math. Anal. Appl. 333 (2007), 1189-1202. | DOI | MR

[17] Li, S., Shamoyan, R.: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball. Bull. Sci. Math. 134 (2010), 144-154. | DOI | MR | Zbl

[18] Li, S., Shamoyan, R.: On some properties of analytic spaces connected with Bergman metric ball. Bull. Iran. Math. Soc. 34 (2008), 121-139. | MR | Zbl

[19] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656-660. | DOI | MR | Zbl

[20] McNeal, J. D., Stein, E. M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73 (1994), 177-199. | MR | Zbl

[21] Oleinik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. | DOI | Zbl

[22] Oleinik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 2 (1974), 135-142. | DOI | MR

[23] Ortega, J. M., Fàbrega, J.: Mixed-norm spaces and interpolation. Stud. Math. 109 (1994), 233-254. | MR | Zbl

[24] Range, R. M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics 108 Springer, New York (1986). | DOI | MR | Zbl

[25] Shamoyan, R. F., Kurilenko, S. M., Sergey, M.: On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space. Journal of Siberian Federal University 7 (2014), 383-388.

[26] Shamoyan, R. F., Mihić, O. R.: On distance function in some new analytic Bergman type spaces in $\Bbb C^n$. J. Funct. Spaces (2014), Article ID 275416, 10 pages. | MR

[27] Shamoyan, R. F., Mihić, O. R.: On new estimates for distances in analytic function spaces in higher dimension. Sib. Èlektron. Mat. Izv. (electronic only) 6 (2009), 514-517. | MR | Zbl

[28] Shamoyan, R. F., Mihić, O. R.: On some properties of holomorphic spaces based on Bergman metric ball and Luzin area operator. J. Nonlinear Sci. Appl. 2 (2009), 183-194. | DOI | MR | Zbl

[29] Shamoyan, R., Povprits, E.: Sharp theorems on traces in analytic spaces in tube domains over symmetric cones. Journal of Siberian Federal University 6 (2013), 527-538. | MR

[30] Shamoyan, R. F., Povprits, E. V.: Multifunctional analytic spaces on products of bounded strictly pseudoconvex domains and embedding theorems. Kragujevac J. Math. 37 (2013), 221-244. | MR

[31] Shamoyan, R., Radnia, M.: On some new embedding theorems for some analytic classes in the unit ball. J. Nonlinear Sci. Appl. 2 (2009), 243-250. | DOI | MR | Zbl

[32] Yamaji, S.: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain. Hiroshima Math. J. 43 (2013), 107-127. | DOI | MR | Zbl

[33] Yamaji, S.: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain. J. Math. Soc. Japan 65 (2013), 1101-1115. | DOI | MR | Zbl

[34] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl

Cité par Sources :