@article{10_1007_s10587_016_0272_z,
author = {D\k{e}becki, Jacek},
title = {Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on {Weil} bundles},
journal = {Czechoslovak Mathematical Journal},
pages = {511--525},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0272-z},
mrnumber = {3519618},
zbl = {06604483},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0272-z/}
}
TY - JOUR AU - Dębecki, Jacek TI - Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles JO - Czechoslovak Mathematical Journal PY - 2016 SP - 511 EP - 525 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0272-z/ DO - 10.1007/s10587-016-0272-z LA - en ID - 10_1007_s10587_016_0272_z ER -
%0 Journal Article %A Dębecki, Jacek %T Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles %J Czechoslovak Mathematical Journal %D 2016 %P 511-525 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0272-z/ %R 10.1007/s10587-016-0272-z %G en %F 10_1007_s10587_016_0272_z
Dębecki, Jacek. Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 511-525. doi: 10.1007/s10587-016-0272-z
[1] Dębecki, J.: Canonical tensor fields of type {$(p,0)$} on Weil bundles. Ann. Pol. Math. 88 (2006), 271-278. | DOI | MR | Zbl
[2] Dębecki, J.: Linear liftings of skew-symmetric tensor fields to Weil bundles. Czech. Math. J. 55 (2005), 809-816. | DOI | MR | Zbl
[3] Eck, D. J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133-140. | DOI | MR | Zbl
[4] Grabowski, J., Urba{ń}ski, P.: Tangent lifts of Poisson and related structures. J. Phys. A, Math. Gen. 28 (1995), 6743-6777. | DOI | MR | Zbl
[5] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czech. Math. J. 37 (1987), 584-607. | MR | Zbl
[6] Kol{á}{ř}, I.: Weil Bundles as Generalized Jet Spaces. Handbook of Global Analysis Elsevier, Amsterdam (2008), 625-664 D. Krupka et al. | MR | Zbl
[7] Kol{á}{ř}, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 6 (1988), 109-117. | DOI | MR | Zbl
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. (corrected electronic version) Springer, Berlin (1993). | MR
[9] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points. Nagoya Math. J. 109 (1988), 69-89. | DOI | MR | Zbl
[10] Mikulski, W. M.: The linear natural operators lifting 2-vector fields to some Weil bundles. Note Mat. 19 (1999), 213-217. | MR | Zbl
Cité par Sources :