Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 511-525 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a classification of all linear natural operators transforming $p$-vectors (i.e., skew-symmetric tensor fields of type $(p,0)$) on $n$-dimensional manifolds $M$ to tensor fields of type $(q,0)$ on $T^AM$, where $T^A$ is a Weil bundle, under the condition that $p\ge 1$, $n\ge p$ and $n\ge q$. The main result of the paper states that, roughly speaking, each linear natural operator lifting $p$-vectors to tensor fields of type $(q,0)$ on $T^A$ is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting $p$-vectors to tensor fields of type $(p,0)$ on $T^A$ and canonical tensor fields of type $(q-p,0)$ on $T^A$.
We give a classification of all linear natural operators transforming $p$-vectors (i.e., skew-symmetric tensor fields of type $(p,0)$) on $n$-dimensional manifolds $M$ to tensor fields of type $(q,0)$ on $T^AM$, where $T^A$ is a Weil bundle, under the condition that $p\ge 1$, $n\ge p$ and $n\ge q$. The main result of the paper states that, roughly speaking, each linear natural operator lifting $p$-vectors to tensor fields of type $(q,0)$ on $T^A$ is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting $p$-vectors to tensor fields of type $(p,0)$ on $T^A$ and canonical tensor fields of type $(q-p,0)$ on $T^A$.
DOI : 10.1007/s10587-016-0272-z
Classification : 58A32
Keywords: natural operator; Weil bundle
@article{10_1007_s10587_016_0272_z,
     author = {D\k{e}becki, Jacek},
     title = {Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on {Weil} bundles},
     journal = {Czechoslovak Mathematical Journal},
     pages = {511--525},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0272-z},
     mrnumber = {3519618},
     zbl = {06604483},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0272-z/}
}
TY  - JOUR
AU  - Dębecki, Jacek
TI  - Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 511
EP  - 525
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0272-z/
DO  - 10.1007/s10587-016-0272-z
LA  - en
ID  - 10_1007_s10587_016_0272_z
ER  - 
%0 Journal Article
%A Dębecki, Jacek
%T Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles
%J Czechoslovak Mathematical Journal
%D 2016
%P 511-525
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0272-z/
%R 10.1007/s10587-016-0272-z
%G en
%F 10_1007_s10587_016_0272_z
Dębecki, Jacek. Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 511-525. doi: 10.1007/s10587-016-0272-z

[1] Dębecki, J.: Canonical tensor fields of type {$(p,0)$} on Weil bundles. Ann. Pol. Math. 88 (2006), 271-278. | DOI | MR | Zbl

[2] Dębecki, J.: Linear liftings of skew-symmetric tensor fields to Weil bundles. Czech. Math. J. 55 (2005), 809-816. | DOI | MR | Zbl

[3] Eck, D. J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133-140. | DOI | MR | Zbl

[4] Grabowski, J., Urba{ń}ski, P.: Tangent lifts of Poisson and related structures. J. Phys. A, Math. Gen. 28 (1995), 6743-6777. | DOI | MR | Zbl

[5] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czech. Math. J. 37 (1987), 584-607. | MR | Zbl

[6] Kol{á}{ř}, I.: Weil Bundles as Generalized Jet Spaces. Handbook of Global Analysis Elsevier, Amsterdam (2008), 625-664 D. Krupka et al. | MR | Zbl

[7] Kol{á}{ř}, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 6 (1988), 109-117. | DOI | MR | Zbl

[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. (corrected electronic version) Springer, Berlin (1993). | MR

[9] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points. Nagoya Math. J. 109 (1988), 69-89. | DOI | MR | Zbl

[10] Mikulski, W. M.: The linear natural operators lifting 2-vector fields to some Weil bundles. Note Mat. 19 (1999), 213-217. | MR | Zbl

Cité par Sources :