Grauert's line bundle convexity, reduction and Riemann domains
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 493-509 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a convexity notion for complex spaces $X$ with respect to a holomorphic line bundle $L$ over $X$. This definition has been introduced by Grauert and, when $L$ is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert's reduction result for holomorphically convex spaces. In the same vein, we show that if $H^0(X,L)$ separates each point of $X$, then $X$ can be realized as a Riemann domain over the complex projective space $\Bbb {P}^n$, where $n$ is the complex dimension of $X$ and $L$ is the pull-back of ${\mathcal O}(1)$.
We consider a convexity notion for complex spaces $X$ with respect to a holomorphic line bundle $L$ over $X$. This definition has been introduced by Grauert and, when $L$ is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert's reduction result for holomorphically convex spaces. In the same vein, we show that if $H^0(X,L)$ separates each point of $X$, then $X$ can be realized as a Riemann domain over the complex projective space $\Bbb {P}^n$, where $n$ is the complex dimension of $X$ and $L$ is the pull-back of ${\mathcal O}(1)$.
DOI : 10.1007/s10587-016-0271-0
Classification : 32E05, 32E99, 32F17
Keywords: Grauert's line bundle convexity; Riemann domain; holomorphic reduction
@article{10_1007_s10587_016_0271_0,
     author = {V\^aj\^aitu, Viorel},
     title = {Grauert's line bundle convexity, reduction and {Riemann} domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {493--509},
     year = {2016},
     volume = {66},
     number = {2},
     doi = {10.1007/s10587-016-0271-0},
     mrnumber = {3519617},
     zbl = {06604482},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0271-0/}
}
TY  - JOUR
AU  - Vâjâitu, Viorel
TI  - Grauert's line bundle convexity, reduction and Riemann domains
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 493
EP  - 509
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0271-0/
DO  - 10.1007/s10587-016-0271-0
LA  - en
ID  - 10_1007_s10587_016_0271_0
ER  - 
%0 Journal Article
%A Vâjâitu, Viorel
%T Grauert's line bundle convexity, reduction and Riemann domains
%J Czechoslovak Mathematical Journal
%D 2016
%P 493-509
%V 66
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0271-0/
%R 10.1007/s10587-016-0271-0
%G en
%F 10_1007_s10587_016_0271_0
Vâjâitu, Viorel. Grauert's line bundle convexity, reduction and Riemann domains. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 493-509. doi: 10.1007/s10587-016-0271-0

[1] Andreotti, A.: Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves. Bull. Soc. Math. Fr. 91 (1963), 1-38 French. | MR | Zbl

[2] Stănăşilă, C. Bănică; O.: Méthodes Algébriques dans la Théorie Globale des Espaces Complexes. Vol. 2. Traduit du Roumain. Collection ``Varia Mathematica'' Gauthier-Villars, Paris (1977), French. | MR

[3] Silva, D. Barlet; A.: Convexité holomorphe intermédiaire. Math. Ann. 296 (1993), 649-665 French. English summary. | DOI | MR

[4] Cartan, H.: Quotients of complex analytic spaces. Contrib. Function Theory Int. Colloqu. Bombay, 1960 Tata Institute of Fundamental Research, Bombay (1960), 1-15. | MR | Zbl

[5] Grauert, H.: Bemerkenswerte pseudokonvexe Mannigfaltigkeiten. Math. Z. 81 (1963), 377-391 German. | MR | Zbl

[6] Grauert, H.: Charakterisierung der holomorph vollständigen komplexen Räume. Math. Ann. 129 (1955), 233-259 German. | DOI | MR | Zbl

[7] Kaup, B.: Über offene analytische "{A}quivalenzrelationen auf komplexen Räumen. Math. Ann. 183 (1969), 6-16 German. | DOI | MR

[8] Remmert, R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci., Paris 243 (1956), 118-121 French. | MR | Zbl

[9] Shiffman, B.: On the removal of singularities for analytic sets. Mich. Math. J. 15 (1968), 111-120. | DOI | MR

[10] Siu, Y.-T.: Techniques of Extension of Analytic Objects. Lecture Notes in Pure and Applied Mathematics, Vol. 8 Marcel Dekker, New York (1974). | MR | Zbl

[11] Ueda, T.: On the neighborhood of a compact complex curve with topologically trivial normal bundle. J. Math. Kyoto Univ. 22 (1983), 583-607. | DOI | MR | Zbl

Cité par Sources :