Keywords: generalized skew derivation; Lie ideal; prime ring
@article{10_1007_s10587_016_0270_1,
author = {de Filippis, Vincenzo},
title = {Annihilating and power-commuting generalized skew derivations on {Lie} ideals in prime rings},
journal = {Czechoslovak Mathematical Journal},
pages = {481--492},
year = {2016},
volume = {66},
number = {2},
doi = {10.1007/s10587-016-0270-1},
mrnumber = {3519616},
zbl = {06604481},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0270-1/}
}
TY - JOUR AU - de Filippis, Vincenzo TI - Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings JO - Czechoslovak Mathematical Journal PY - 2016 SP - 481 EP - 492 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0270-1/ DO - 10.1007/s10587-016-0270-1 LA - en ID - 10_1007_s10587_016_0270_1 ER -
%0 Journal Article %A de Filippis, Vincenzo %T Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings %J Czechoslovak Mathematical Journal %D 2016 %P 481-492 %V 66 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-016-0270-1/ %R 10.1007/s10587-016-0270-1 %G en %F 10_1007_s10587_016_0270_1
de Filippis, Vincenzo. Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 481-492. doi: 10.1007/s10587-016-0270-1
[1] Beidar, K. I., III., W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). | MR | Zbl
[2] Carini, L., Filippis, V. De: Commutators with power central values on a Lie ideal. Pac. J. Math. 193 (2000), 269-278. | DOI | MR | Zbl
[3] Carini, L., Filippis, V. De, Scudo, G.: Power-commuting generalized skew derivations in prime rings. Mediterr. J. Math. 13 (2016), 53-64. | DOI | MR | Zbl
[4] Chang, J.-C.: On the identity {$h(x)=af(x)+g(x)b$}. Taiwanese J. Math. 7 (2003), 103-113. | DOI | MR | Zbl
[5] Chuang, C. L.: Differential identities with automorphisms and antiautomorphisms. II. J. Algebra 160 (1993), 130-171. | DOI | MR
[6] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms. I. J. Algebra 149 (1992), 371-404. | DOI | MR
[7] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | Zbl
[8] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation. J. Algebra 288 (2005), 59-77. | DOI | MR | Zbl
[9] Filippis, V. De: Generalized derivations and commutators with nilpotent values on Lie ideals. Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. | MR | Zbl
[10] Filippis, V. De, Vincenzo, O. M. Di: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Commun. Algebra 40 (2012), 1918-1932. | DOI | MR | Zbl
[11] Filippis, V. De, Scudo, G.: Strong commutativity and Engel condition preserving maps in prime and semiprime rings. Linear Multilinear Algebra 61 (2013), 917-938. | DOI | MR | Zbl
[12] Dhara, B., Kar, S., Mondal, S.: Generalized derivations on Lie ideals in prime rings. Czech. Math. J. 65 (140) (2015), 179-190. | DOI | MR | Zbl
[13] Vincenzo, O. M. Di: On the {$n$}-th centralizer of a Lie ideal. Boll. Unione Mat. Ital., A Ser. (7) 3 (1989), 77-85. | MR | Zbl
[14] Herstein, I. N.: Topics in Ring Theory. Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). | MR | Zbl
[15] Jacobson, N.: Structure of Rings. Colloquium Publications 37. Amer. Math. Soc. Providence (1964). | MR
[16] Lanski, C.: An Engel condition with derivation. Proc. Am. Math. Soc. 118 (1993), 731-734. | DOI | MR | Zbl
[17] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | Zbl
[18] Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic 2. Pac. J. Math. 42 (1972), 117-136. | DOI | MR
[19] Lee, T.-K.: Generalized skew derivations characterized by acting on zero products. Pac. J. Math. 216 (2004), 293-301. | DOI | MR | Zbl
[20] Lee, T.-K., Liu, K.-S.: Generalized skew derivations with algebraic values of bounded degree. Houston J. Math. 39 (2013), 733-740. | MR | Zbl
[21] III., W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR | Zbl
[22] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. | DOI | MR
[23] Rowen, L. H.: Polynomial Identities in Ring Theory. Pure and Applied Math. 84 Academic Press, New York (1980). | MR | Zbl
[24] Wang, Y.: Power-centralizing automorphisms of Lie ideals in prime rings. Commun. Algebra 34 (2006), 609-615. | DOI | MR | Zbl
[25] Wong, T.-L.: Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378. | MR | Zbl
Cité par Sources :